1 / 27

Examples with Coupon data (Bagozzi, 1994)

This study examines the relationship between attitudes, intentions, and behavior related to coupon usage among action-oriented and state-oriented women.

elisabethr
Download Presentation

Examples with Coupon data (Bagozzi, 1994)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Msam07, Albert Satorra Examples with Coupon data (Bagozzi, 1994)

  2. Msam07, Albert Satorra Data from Bagozzi, Baumgartner, and Yi (1992), on “coupon usage” . Sample A: Action oriented women (n = 85) Intentions #1 4.389 Intentions #2 3.792 4.410 Behavior 1.935 1.855 2.385 Attitudes #1 1.454 1.453 0.989 1.914 Attitudes #2 1.087 1.309 0.841 0.961 1.480 Attitudes #3 1.623 1.701 1.175 1.279 1.220 1.971 Sample B: State oriented women (n = 64) Intentions #1 3.730 Intentions #2 3.208 3.436 Behavior 1.687 1.675 2.171 Attitudes #1 0.621 0.616 0.605 1.373 Attitudes #2 1.063 0.864 0.428 0.671 1.397 Attitudes #3 0.895 0.818 0.595 0.912 0.663 1.498

  3. Msam07, Albert Satorra Variables /LABELS V1 = Intentions1; V2 = Intentions2; V3 = Behavior; V4 = Attitudes1; V5 = Attitudes2; V6 = Attitudes3;

  4. Msam07, Albert Satorra Simple linear regression E1 V4 V1

  5. Msam07, Albert Satorra Simple linear regression /TITLE Regresión lineal simple (path2.txt) /SPECIFICATIONS VARIABLES = 6; CASES = 85; METHODS=ML; MATRIX=COVARIANCE; /LABELS V1 = Intentions1; V2 = Intentions2; V3 = Behavior; V4 = Attitudes1; V5 = Attitudes2; V6 = Attitudes3; /EQUATIONS V1 = *V4 + E1; /VARIANCES V4 = *; E1 = *; /COVARIANCES /MATRIX 4.389 3.792 4.410 1.935 1.855 2.385 1.454 1.453 0.989 1.914 1.087 1.309 0.841 0.961 1.480 1.623 1.701 1.175 1.279 1.220 1.971 /PRINT /LMTEST /WTEST /END

  6. Msam07, Albert Satorra Simple linear regression GOODNESS OF FIT SUMMARY CHI-SQUARE = 0.000 BASED ON 0 DEGREES OF FREEDOM MEASUREMENT EQUATIONS WITH STANDARD ERRORS AND TEST STATISTICS INTENTIO=V1 = .760*V4 +1.000 E1 .143 5.315 VARIANCES OF INDEPENDENT VARIABLES ----------------------------------   V F --- --- V4 -ATTITUDE 1.914*I I .295 I I 6.481 I I I I E D --- --- E1 -INTENTIO 3.284*I I .507 I I 6.481 I I I I STANDARDIZED SOLUTION: R-SQUARED INTENTIO=V1 = .502*V4 + .865 E1 .252

  7. Msam07, Albert Satorra Bivariate regression E1 V4 V1 V3 E3

  8. Bivariate regression Msam07, Albert Satorra /TITLE Regresión bivariada (path3.txt) /SPECIFICATIONS VARIABLES = 6; CASES = 85; METHODS=ML; MATRIX=COVARIANCE; /LABELS V1 = Intentions1; V2 = Intentions2; V3 = Behavior; V4 = Attitudes1; V5 = Attitudes2; V6 = Attitudes3; /EQUATIONS V1 = *V4 + E1; V3 = *V4 + E3; /VARIANCES V4 = *; E3 = *; E1 = *; /COVARIANCES /MATRIX 4.389 3.792 4.410 1.935 1.855 2.385 1.454 1.453 0.989 1.914 1.087 1.309 0.841 0.961 1.480 1.623 1.701 1.175 1.279 1.220 1.971 /PRINT /LMTEST /WTEST /END

  9. Msam07, Albert Satorra Bivariate regression GOODNESS OF FIT SUMMARY INDEPENDENCE MODEL CHI-SQUARE = 66.306 ON 3 DEGREES OF FREEDOM INDEPENDENCE AIC = 60.30569 INDEPENDENCE CAIC = 49.97773 MODEL AIC = 19.69782 MODEL CAIC = 16.25517 CHI-SQUARE = 21.698 BASED ON 1 DEGREES OF FREEDOM PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS LESS THAN 0.001 THE NORMAL THEORY RLS CHI-SQUARE FOR THIS ML SOLUTION IS 19.122. BENTLER-BONETT NORMED FIT INDEX= 0.673 BENTLER-BONETT NONNORMED FIT INDEX= 0.019 COMPARATIVE FIT INDEX (CFI) = 0.673

  10. Msam07, Albert Satorra Bivariate regression MEASUREMENT EQUATIONS WITH STANDARD ERRORS AND TEST STATISTICS INTENTIO=V1 = .760*V4 +1.000 E1 .143 5.315 BEHAVIOR=V3 = .517*V4 +1.000 E3 .108 4.786 VARIANCES OF INDEPENDENT VARIABLES ---------------------------------- V F --- --- V4 -ATTITUDE 1.914*I I .295 I I 6.481 I I I I E D --- --- E1 -INTENTIO 3.284*I I .507 I I 6.481 I I I I E3 -BEHAVIOR 1.874*I I .289 I I 6.481 I I I I STANDARDIZED SOLUTION: R-SQUARED INTENTIO=V1 = .502*V4 + .865 E1 .252 BEHAVIOR=V3 = .463*V4 + .886 E3 .214

  11. Msam07, Albert Satorra Bivariate regression (correlated disturbance) E1 V4 V1 V3 E3

  12. Bivariate regression (correlated disturbances) Msam07, Albert Satorra /TITLE Regresión bivariada (path4.txt) /SPECIFICATIONS VARIABLES = 6; CASES = 85; METHODS=ML; MATRIX=COVARIANCE; /LABELS V1 = Intentions1; V2 = Intentions2; V3 = Behavior; V4 = Attitudes1; V5 = Attitudes2; V6 = Attitudes3; /EQUATIONS V1 = *V4 + E1; V3 = *V4 + E3; /VARIANCES V4 = *; E1 = *; E3 = *; /COVARIANCES E1,E3 = *; /MATRIX 4.389 3.792 4.410 1.935 1.855 2.385 1.454 1.453 0.989 1.914 1.087 1.309 0.841 0.961 1.480 1.623 1.701 1.175 1.279 1.220 1.971 /PRINT /LMTEST /WTEST /END

  13. Bivariate regression (correlated disturbance) Msam07, Albert Satorra GOODNESS OF FIT SUMMARY CHI-SQUARE = 0.000 BASED ON 0 DEGREES OF FREEDOM NONPOSITIVE DEGREES OF FREEDOM. PROBABILITY COMPUTATIONS ARE UNDEFINED. MEASUREMENT EQUATIONS WITH STANDARD ERRORS AND TEST STATISTICS INTENTIO=V1 = .760*V4 +1.000 E1 .143 5.315 BEHAVIOR=V3 = .517*V4 +1.000 E3 .108 4.786 VARIANCES OF INDEPENDENT VARIABLES ---------------------------------- V F --- --- V4 -ATTITUDE 1.914*I I .295 I I 6.481 I I I I E D --- --- E1 -INTENTIO 3.284*I I .507 I I 6.481 I I I I E3 -BEHAVIOR 1.874*I I .289 I I 6.481 I I I I

  14. Bivariate regression (correlated disturbance) Msam07, Albert Satorra COVARIANCES AMONG INDEPENDENT VARIABLES --------------------------------------- E D --- --- E3 -BEHAVIOR 1.184*I I E1 -INTENTIO .300 I I 3.947 I I I I STANDARDIZED SOLUTION: R-SQUARED INTENTIO=V1 = .502*V4 + .865 E1 .252 BEHAVIOR=V3 = .463*V4 + .886 E3 .214 CORRELATIONS AMONG INDEPENDENT VARIABLES --------------------------------------- E D --- --- E3 -BEHAVIOR .477*I I E1 -INTENTIO I I I I

  15. Msam07, Albert Satorra Simultaneous equations E1 V4 V1 E3 V3

  16. Msam07, Albert Satorra Simultaneous equations /TITLE Path analysis (path1.txt) /SPECIFICATIONS VARIABLES = 6; CASES = 85; METHODS=ML; MATRIX=COVARIANCE; /LABELS V1 = Intentions1; V2 = Intentions2; V3 = Behavior; V4 = Attitudes1; V5 = Attitudes2; V6 = Attitudes3; /EQUATIONS V1 = *V4 + E1; V3 = *V1 + *V4 + E3; /VARIANCES V4 = *; E1 = *; E3 = *; /COVARIANCES /MATRIX 4.389 3.792 4.410 1.935 1.855 2.385 1.454 1.453 0.989 1.914 1.087 1.309 0.841 0.961 1.480 1.623 1.701 1.175 1.279 1.220 1.971 /LMTEST /WTEST /END

  17. Msam07, Albert Satorra Simultaneous equations GOODNESS OF FIT SUMMARY INDEPENDENCE MODEL CHI-SQUARE = 66.306 ON 3 DEGREES OF FREEDOM INDEPENDENCE AIC = 60.30569 INDEPENDENCE CAIC = 49.97773 MODEL AIC = 0.00000 MODEL CAIC = 0.00000 CHI-SQUARE = 0.000 BASED ON 0 DEGREES OF FREEDOM NONPOSITIVE DEGREES OF FREEDOM. PROBABILITY COMPUTATIONS ARE UNDEFINED. BENTLER-BONETT NORMED FIT INDEX= 1.000

  18. Msam07, Albert Satorra Simultaneous equations MEASUREMENT EQUATIONS WITH STANDARD ERRORS AND TEST STATISTICS V1 =V1 = .760*V4 +1.000 E1 .143 5.315 V3 =V3 = .360*V1 + .243*V4 +1.000 E3 .072 .110 4.976 2.215 VARIANCES OF INDEPENDENT VARIABLES ---------------------------------- V F --- --- V4 - V4 1.914*I I .295 I I 6.481 I I I I

  19. Msam07, Albert Satorra Simultaneous equations VARIANCES OF INDEPENDENT VARIABLES ---------------------------------- E D --- --- E1 - V1 3.284*I I .507 I I 6.481 I I I I E3 - V3 1.447*I I .223 I I 6.481 I I I I STANDARDIZED SOLUTION: R-SQUARED V1 =V1 = .502*V4 + .865 E1 .252 V3 =V3 = .489*V1 + .218*V4 + .779 E3 .393

  20. Msam07, Albert Satorra SEM multiple indicators E4 E1 V4 E5 F1 V1 V5 E6 V6 E3 V3

  21. Msam07, Albert Satorra SEM: Action oriented /TITLE SEM indicadores múltiples (Lisrel1.txt) /SPECIFICATIONS VARIABLES = 6; CASES = 85; METHODS=ML; MATRIX=COVARIANCE; /LABELS V1 = Intentions1; V2 = Intentions2; V3 = Behavior; V4 = Attitudes1; V5 = Attitudes2; V6 = Attitudes3; /EQUATIONS V4 = *F1 + E4; V5 = *F1 + E5; V6 = *F1 + E6; V1 = *F1 + E1; V3 = *F1 + *V1 + E3; /VARIANCES F1 = 1; E1 = *; E3 TO E6 = *; /COVARIANCES /MATRIX 4.389 3.792 4.410 1.935 1.855 2.385 1.454 1.453 0.989 1.914 1.087 1.309 0.841 0.961 1.480 1.623 1.701 1.175 1.279 1.220 1.971 /LMTEST /WTEST /END

  22. Msam07, Albert Satorra SEM multiple indicators E4 D2 V4 E1 V1 E5 F1 F2 V5 E2 V2 E6 V6 E3 V3

  23. Msam07, Albert Satorra SEM: Action oriented /TITLE Path analysis /SPECIFICATIONS VARIABLES = 6; CASES = 85; METHODS=ML; MATRIX=COVARIANCE; ! GROUPS = 2; /LABELS V1 = Inte1; V2 = Inten2; V3 = Beha; V4 = Att1; V5 = Att2; V6 = Att3; F1 = Att; F2 = Int; /EQUATIONS V4 = *F1 + E4; V5 = *F1 + E5; V6 = *F1 + E6; V1 = 1F2 + E1; V2 = *F2 + E2; F2 = *F1 + D2; V3 = *F1 + *F2 + E3; /VARIANCES F1 = 1; D2 =* ; E1 T0 E6 = *; /COVARIANCES /MATRIX 4.389 3.792 4.410 1.935 1.855 2.385 1.454 1.453 0.989 1.914 1.087 1.309 0.841 0.961 1.480 1.623 1.701 1.175 1.279 1.220 1.971 /PRINT !/LMTEST !/WTEST /END

  24. Msam07, Albert Satorra SEM: Action oriented INTE1 =V1 = 1.000 F2 + 1.000 E1 INTEN2 =V2 = 1.014*F2 + 1.000 E2 .088 11.585@ BEHA =V3 = .330*F2 + .492*F1 + 1.000 E3 .103 .204 3.203@ 2.411@ ATT1 =V4 = 1.020*F1 + 1.000 E4 .136 7.501@ ATT2 =V5 = .951*F1 + 1.000 E5 .117 8.124@ ATT3 =V6 = 1.269*F1 + 1.000 E6 .127 10.005@ GOODNESS OF FIT SUMMARY FOR METHOD = ML CHI-SQUARE = 5.426 BASED ON 7 DEGREES OF FREEDOM PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS .60809 INTE1 =V1 = .923 F2 + .384 E1 .852 INTEN2 =V2 = .934*F2 + .358 E2 .872 BEHA =V3 = .413*F2 + .318*F1 + .742 E3 .450 ATT1 =V4 = .737*F1 + .676 E4 .543 ATT2 =V5 = .781*F1 + .624 E5 .611 ATT3 =V6 = .904*F1 + .427 E6 .817 INT =F2 = .678*F1 + .735 D2 .460

  25. Msam07, Albert Satorra SEM: State oriented /TITLE Path analysis /SPECIFICATIONS VARIABLES = 6; CASES = 64; METHODS=ML; MATRIX=COVARIANCE; /LABELS V1 = Inte1; V2 = Inten2; V3 = Beha; V4 = Att1; V5 = Att2; V6 = Att3; F1 = Att; F2 = Int; /EQUATIONS V4 = *F1 + E4; V5 = *F1 + E5; V6 = *F1 + E6; V1 = 1F2 + E1; V2 = *F2 + E2; F2 = *F1 + D2; V3 = *F1 + *F2 + E3; /VARIANCES F1 = 1; D2 =* ; E1 =*; E2 =*; E3 T0 E6 = *; /COVARIANCES !E3,E2=*; /MATRIX 3.730 3.208 3.436 1.687 1.675 2.171 0.621 0.616 0.605 1.373 1.063 0.864 0.428 0.671 1.397 0.895 0.818 0.595 0.912 0.663 1.498 /PRINT /LMTEST ! PROCESS =SIMULTANEOUS; ! SET=PVV,PFV,PFF,PDD,PEE; /WTEST /END GOODNESS OF FIT SUMMARY FOR METHOD = ML CHI-SQUARE = 10.808 BASED ON 7 DEGREES OF FREEDOM PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS .14722

  26. SEM: multiple group Msam07, Albert Satorra /TITLE Action oriented /SPECIFICATIONS VARIABLES = 6; CASES = 85; METHODS=ML; MATRIX=COVARIANCE; GROUPS = 2; /LABELS V1 = Inte1; V2 = Inten2; V3 = Beha; V4 = Att1; V5 = Att2; V6 = Att3; F1 = Att; F2 = Int; /EQUATIONS V4 = *F1 + E4; V5 = *F1 + E5; V6 = *F1 + E6; V1 = 1F2 + E1; V2 = *F2 + E2; F2 = *F1 + D2; V3 = *F1 + *F2 + E3; /VARIANCES F1 = 1; D2 =* ; E1 T0 E6 = *; /COVARIANCES /MATRIX 4.389 3.792 4.410 1.935 1.855 2.385 1.454 1.453 0.989 1.914 1.087 1.309 0.841 0.961 1.480 1.623 1.701 1.175 1.279 1.220 1.971 !/PRINT !/LMTEST !/WTEST /END /TITLE state ortiented /SPECIFICATIONS VARIABLES = 6; CASES = 64; METHODS=ML; MATRIX=COVARIANCE; /LABELS V1 = Inte1; V2 = Inten2; V3 = Beha; V4 = Att1; V5 = Att2; V6 = Att3; F1 = Att; F2 = Int; /EQUATIONS V4 = *F1 + E4; V5 = *F1 + E5; V6 = *F1 + E6; V1 = 1F2 + E1; V2 = *F2 + E2; F2 = *F1 + D2; V3 = *F1 + *F2 + E3; /VARIANCES F1 = 1; D2 =* ; E1 T0 E6 = *; /COVARIANCES E3,E2=*; /MATRIX 3.730 3.208 3.436 1.687 1.675 2.171 0.621 0.616 0.605 1.373 1.063 0.864 0.428 0.671 1.397 0.895 0.818 0.595 0.912 0.663 1.498 /PRINT /LMTEST PROCESS =SIMULTANEOUS; SET=PVV,PFV,PFF,PDD,PEE; /WTEST /END GOODNESS OF FIT SUMMARY FOR METHOD = ML INDEPENDENCE MODEL CHI-SQUARE = 526.203 ON 30 DEGREES OF FREEDOM CHI-SQUARE = 15.846 BASED ON 13 DEGREES OF FREEDOM PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS .25757

  27. Msam07, Albert Satorra SEM: multiple group /TITLE Action oriented /SPECIFICATIONS VARIABLES = 6; CASES = 85; METHODS=ML; MATRIX=COVARIANCE; GROUPS = 2; /LABELS V1 = Inte1; V2 = Inten2; V3 = Beha; V4 = Att1; V5 = Att2; V6 = Att3; F1 = Att; F2 = Int; /EQUATIONS V4 = *F1 + E4; V5 = *F1 + E5; V6 = *F1 + E6; V1 = 1F2 + E1; V2 = *F2 + E2; F2 = *F1 + D2; V3 = *F1 + *F2 + E3; /VARIANCES F1 = 1; D2 =* ; E1 T0 E6 = *; /COVARIANCES /MATRIX 4.389 3.792 4.410 1.935 1.855 2.385 1.454 1.453 0.989 1.914 1.087 1.309 0.841 0.961 1.480 1.623 1.701 1.175 1.279 1.220 1.971 !/PRINT !/LMTEST !/WTEST /END /TITLE state ortiented /SPECIFICATIONS VARIABLES = 6; CASES = 64; METHODS=ML; MATRIX=COVARIANCE; /LABELS V1 = Inte1; V2 = Inten2; V3 = Beha; V4 = Att1; V5 = Att2; V6 = Att3; F1 = Att; F2 = Int; /EQUATIONS V4 = *F1 + E4; V5 = *F1 + E5; V6 = *F1 + E6; V1 = 1F2 + E1; V2 = *F2 + E2; F2 = *F1 + D2; V3 = *F1 + *F2 + E3; /VARIANCES F1 = 1; D2 =* ; E1 T0 E6 = *; /COVARIANCES E3,E2=*; /MATRIX 3.730 3.208 3.436 1.687 1.675 2.171 0.621 0.616 0.605 1.373 1.063 0.864 0.428 0.671 1.397 0.895 0.818 0.595 0.912 0.663 1.498 /PRINT /LMTEST PROCESS =SIMULTANEOUS; SET=PVV,PFV,PFF,PDD,PEE; /WTEST /CONSTRAINTS (1,F2,F1) = (2,F2,F1); (1,V3,F1) = (2,V3,F1); (1,V3,F2) = (2,V3,F2); /END GOODNESS OF FIT SUMMARY FOR METHOD = ML CHI-SQUARE = 17.862 BASED ON 16 DEGREES OF FREEDOM PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS .33206

More Related