1 / 61

Stellar Magnetospheres part deux: Magnetic Hot Stars

Stellar Magnetospheres part deux: Magnetic Hot Stars. Stan Owocki. Key concepts from lec. 1. MagRe# --> inf => “ideal” => frozen flux breaks down at small scales: reconnection Lorentz force ~ mag. pressure + tension plasma b ~ P gas /P mag ~ (a/V A ) 2

elise
Download Presentation

Stellar Magnetospheres part deux: Magnetic Hot Stars

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Stellar Magnetospherespart deux: Magnetic Hot Stars Stan Owocki

  2. Key concepts from lec. 1 • MagRe# --> inf => “ideal” => frozen flux • breaks down at small scales: reconnection • Lorentz force ~ mag. pressure + tension • plasma b ~ Pgas/Pmag ~ (a/VA)2 • press. scale ht. H << R (except in corona) • wind mag. conf. h ~B2R2/Mdot*V¥

  3. e.g, for dipole field, q=3; h ~ 1/r 4 h* for OB SG, to get h*~1, need B* ~ 100 G Wind Magnetic Confinement Ratio of magnetic to kinetic energy density: Alfven Radius: h( RA) º 1 For dipole (q=3): RA = h*1/4 R*

  4. Hot Stars vs. Sun • Luminous Radiative Envelope (not conv.) • Radiatively Driven Wind (line scatt.) • Twind ~= Teff • Mdot ~ 10-7 MO/yr >> Mdot,sun • Detected B-fields often steady, dipole • Rotation can be rapid Vrot ~< Vcrit • NOT a (direct) solar Coronal analog!

  5. Light’s Momentum • Light transports energy (& information) • But it also has momentum, p=E/c • Usually neglected, because c is so high • But becomes significant for very bright stars, • Key question: how big is force vs. gravity?? • Ge=ge/g < 1 (near but below “Edd. limit”) • “CAK” wind model: Glines = glines/g > 1

  6. Aside: Radiation Pressure vs. Gas Pressure • Force depends on gradient of Pressure • grad Prad comes from opacityk • Deep interior (t>>1), Prad nearly isotropic • Prad + Pgas act together => Hr=a2/g(1-G) • But near surface (t ~1) radiation “beamed” • wind is not “Radiation Pressure Corona” H ~< R

  7. if k gray e.g., compare electron scattering force vs. gravity s L Th g 2 k 4 r c L p m e e el G º = = g 4 GM c p GM grav 2 r • For sun, GO ~ 2 x 10-5 • But for hot-stars with L~ 106 LO ; M=10-50 MO . . . G<1 ~ Radiative force

  8. Lsob Optically Thick Line-Absorption in an Accelerating Stellar Wind << R* For strong, optically thick lines:

  9. CAK force for power-law line ensemble

  10. CAK wind in zero-gas-pressure limit

  11. Graphical solution

  12. Magnetohydrodynamic (MHD) Equations Mass Momentum Energy Ideal Gas E.O.S. Divergence free B mag Induction

  13. Magnetohydrodynamic (MHD) Equations Mass Momentum Energy Ideal Gas E.O.S. Divergence free B mag Induction

  14. MHD Simulation of Wind Channeling IsothermalNo Rotation Confinement parameter h*=1/3 A. ud Doula PhD thesis 2002

  15. MHD Simulation of Wind Channeling IsothermalNo Rotation Confinement parameter h*=1

  16. MHD Simulation of Wind Channeling IsothermalNo Rotation Confinement parameter h*= 3

  17. MHD Simulation of Wind Channeling IsothermalNo Rotation Confinement parameter h*=10

  18. RA~ h*1/4 R* MHD Simulation of Wind Channeling IsothermalNo Rotation Confinement parameter h*=10

  19. RA~ h*1/4 R* IsothermalNo Rotation Confinement parameter h*=1000 ! !

  20. 295 G ; h* = 1 93 G ; h* = 0.1 165 G ; h* = 0.32 Final state of isothermal models 520 G ; h* = 3.2 930 G ; h* = 10 1650 G ; h* = 32

  21. Q1 Ori C

  22. MHD simulation for Q1 Ori C (O7 V) • Bobs ~ 1100 G + Prot = 14 days • Mdot~ 10-7 Msun/yr • h*~= 14 • Magnetic Confined Wind Shock (MCWS) • kev X-rays => match Chandra obs.

  23. Magnetically Confined Wind-Shocks Babel & Montmerle 1997 Magnetic Ap-Bp stars

  24. Magnetically Confined Wind Shock log T still no rotation but now with Radiative Cooling ~ 2 kev X-rays fit Chandra spectrum for Q1 Ori C

  25. Q-1 Ori C Gagne et al. 2005, ApJ, 528, 986 Prot = 13 days

  26. Q1 Ori C b ~ 45o i ~ 45o

  27. X-ray Light Curve for Q1Ori C

  28. Magnetically Torqued Disk (MTD) Cassinelli et al. 2002

  29. Kepler co-rotation Radius, RK: GM/ RK2 =Vf2/RK =Vrot2RK/R*2 RK= w-2/3R* w=Vrot/Vcrit Vcrit2 = GM/R* Alfven radius: h(RA)=1 RA = *1/4 R* e.g, for dipole field,  ~ 1/r 4 Alfven vs. Kepler Radius when RA > RK : Magnetic spin-up => centrifugal support & ejection

  30. Keplerian spin-up vs. escape sqrt(h*) ~B vf > vesc vf< vkep w = Vrot/Vcrit

  31. RK RA RK RA MHD Sims of Field-Aligned Rotation h*=10 ; vrot=250 km/s (w=1/2) Vf/Vrigid Density

  32. Field aligned rotation again isothermal, but now with Vrot=250 km/s = Vcrit/2 RK RA

  33. Owocki & ud-Doula 2003 Magnetically Torqued Disk Cassinelli et al. 2002

  34. s Ori E

  35. Magnetic Bp Stars • s Ori E (B2p V) • Prot = 1.2 days => vrot/vcrit ~ 1/2 • Bobs ~ 104 G => h* ~ 107 ! • => VAlfvenvery large => Courant time very small • => Direct MHD impractical • Instead treat fields lines as “Rigid”

  36. Strong field limit: B*,h* --> ∞ • Field lines act asrigid guides for wind outflow • Torqueup wind outflow • Holddown disk material vs. centrifugal force • Problem: VAlfven ->∞ => can’t do MHD • But can model semi-analytically • Rigidly Rotating Magnetosphere (RRM) • gas accumulates at minima in grav+cent. potential

  37. Effective Gravitational+Centrifugal Potential

  38. Rigidly Rotating Magnetosphere Townsend & Owocki (2005)

  39. Accumulation Surface Townsend & Owocki (2005)

  40. RRM model for s Ori E B*~104 G h*~106 ! tilt ~ 55o

  41. RRM model for s Ori E photometry EM +B-field B*~104 G => h*~106 ! tilt ~ 55o Ha polarimetry

  42. Townsend, Owocki & Groote (2005)

  43. Ha Observations s Ori E RRM Model

  44. Sanz-Forcada et al. (2004)

  45. MHD sim of centrifugal breakout log(r) h*= 620 vrot=vcrit/2

  46. Centrifugally Driven Reconnection Flare log T h*= 620 vrot=vcrit/2 ~ 4-5 kev X-ray flares, as seen in s Ori E

  47. Model grid for 2-Parameter study: Rotation & Magnetic Confinement

  48. RK RA Isothermal, vrot=vcrit/2, h*=100

  49. RK Isothermal, vrot=vcrit/2, h*=1000 RA~7R*

More Related