1 / 67

Introduction for HITACHI Z-2000 SERIES Polarized Zeeman Atomic Absorption Spectrophotometer

Introduction for HITACHI Z-2000 SERIES Polarized Zeeman Atomic Absorption Spectrophotometer. About HITACHI Polarized Zeeman AAS. Year Model Units 1973 501 (Flame) 46 1976 170-70 (Furnace) 291

elliot
Download Presentation

Introduction for HITACHI Z-2000 SERIES Polarized Zeeman Atomic Absorption Spectrophotometer

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Introduction forHITACHI Z-2000 SERIES Polarized Zeeman Atomic Absorption Spectrophotometer

  2. About HITACHI Polarized Zeeman AAS Year Model Units 1973 501 (Flame) 46 1976 170-70 (Furnace) 291 1980 180-60 (Flame) 103 180-70 (Furnace) 211 180-80 (Tandem) 488 Tandem alignment 1983 Z-6000 (Flame) 356 Z-7000 (Furnace) 134 Z-8000 (Tandem) 531 1987 Z-9000 (Furnace) 346 Multi-elements analysis 1987 Z-6100 (Flame) 1,365 1988 Z-8100 (Tandem) 566 1991 Z-8200 (Tandem) 1,054 PC control 1996 Z-5000 series 1,610 3-D optics三次元光学系 2004 Z-2000 series>450 Dual detector system二検知器 Hitachi introduced world’s first polarized Zeeman AAS Model 501 in 1973, and have delivered a variety of units to about 7,000 customers in 25 countries around the world.

  3. New Model / Z-2000 Series Product configuration (1) Tandem Type Model Z-2000 (2) Flame Type Model Z-2300 (3) Graphite Furnace Type Model Z-2700 Z-2300 Z-2000 Z-2700

  4. High Quality • Direct-current Zeeman background correction(both Flame method and Graphite Furnace method)     直流ゼーマンバックグラウンド補正、フレームとファーネスの両方  • 2. Dual detector  二検知器 Photomultiplier for Sampleサンプル用光電子増倍管 Photomultiplier for referenceレファレンス用光電子増倍管 Z-2000 series Optics Dual detector system enables simultaneous signal capture of both Sample and Reference.二検知器システムにより、サンプル光とレファレンス光の同時取り込みが可能になりました。

  5. 20 ms 20 ms Timing Chart of Signal Processing Exact simultaneous measurement of sample signal and reference signal with the dual detector system realizes low noise and highly accurate analysis.

  6. New optics with dual detection system achieves better sensitivity. Comparison data among Z-8200/Z-5000/Z-2000 Model Z-8200 Model Z-5000 Model Z-2000 Element : As (193.7nm) Graphite furnace method, As Standard Solution (1ug/L) 40uL injection

  7. Stable baseline • Flame DC Zeeman correction and dual detector system achieved very stable baseline for long time. • After the warm-up time of about 5 min., baseline can be stabilized over one hour. Baseline change (Flame method) : Cu lamp

  8. Magnet Lamp Flame Optics Detector Burner Head Heating Absorption Cell HFS-3 Z-2000 Z-5000 Heating Absorption Cell Shield Plate Background correction possible Background correction impossible Zeeman background correction in Hydride Formation method Magnet descend mechanism Magnet is exposed to Flame Zeeman background correction becomes possible, since heating absorption cell can be set between magnet.

  9. Zeeman background correction in Hydride Formation method As Standard Solution 0 5 10 15 ug/L As Standard Solution 0 5 10 15 ug/L River Water Z-5000 Z-2000 Measurement of As (HFS-3, Heating Absorption cell)

  10. Know-how for a better AAS expert更なる原子吸光スペシャリストへの測定のコツ Hitachi High-Technologies

  11. FLAME

  12. The Determination of Cadmium, Copper and Lead in Nickel Plating Bath Solution.

  13. Problem問題点 1. Different dilutions, different viscosities cause different delay times     希釈倍率による粘度差で試料の到達時間に差が出る 2. Large number of samples多数検体 3. Long-term stability required 長時間安定性が必要 4. Clogging of burner バーナーの詰り 5. Corrosion by highly acidic solution 高酸性溶液による腐食 Analysis of high-calorie food高カロリー食品の分析 Requirements for analysis分析に対する要求項目 • Rapid analysis (use of autosampler)迅速分析 • Concentration difference in elements(different dilution factors) 元素により濃度差 • Continuous measurement (multi-elements sequential analysis) 連続測定

  14. Analysis of high-calorie food Solution 1.Different dilutions, different viscosities cause different delay times希釈倍率による粘度差で試料の到達時間に差が出る → Different delay time can be set for each element 元素毎に測定開始までの時間設定が可能 Delay time

  15. Analysis of high-calorie food 2.Large number of samples 多量検体 →Multiple autosampler racks can be used.      オートサンプラのラックが複数使えます。

  16. Analysis of high-calorie food 3. Long-term Stability長時間安定性

  17. Analysis of high-calorie food 4. Clogging of burnerバーナーの詰り → Clean by setting the delay time (pre-spray) 予備噴霧時間の設定により洗浄 1~30min

  18. Cleaning of nebulizer ネブライザーの洗浄 OK NG Nebulizer tip 先端 insert from this side Inlet 吸入口 Cleaning wire A cleaning wire has to be inserted from inlet. クリーニングワイヤーは吸入口から入れる。

  19. Cleaning of burner head Overhaul cleaning is required once a week. The burner head is cleaned by thick paper. バーナースロットは厚紙でクリーニング。               分解清掃は週1回程度は必ず行う。

  20. Analysis of high-calorie food 5. Corrosion by highly acidic solution 高酸性溶液による腐食 Engineering plastic (chemical resistant) エンジニアプラスチック (耐薬品性)

  21. Chemical Resistance of Flame Burner Chamber

  22. Concentration range can be changed by analytical line selection. 分析線を変えることにより測定濃度範囲を変えられます Sensitivity for 1mg/L Na

  23. Use of oxydizing flame and reduction flame 酸化炎と還元炎の使い分け Flame condition フレームの状態 Oxydizing flame (fuel lean) 酸化炎 Reduction flame (fuel rich) 還元炎 Applicable elements Cd, Pb, Mn, Fe... Sn, Cr, Mo...

  24. Difference of linearity in working curves フレーム状態による検量線の違い Oxydizing flame酸化炎 Reduction flame還元炎 Example of Fe 0.2 0.2 Absorbance Absorbance 0 0 Conc. Conc. Oxydizing flame may be changed to reduction flame by introduction of real sample. Also, the flame condition may be changed acetone come from C2H2 cylinder when residual pressure < 0.5MPa 実試料の導入によって酸化炎→還元炎に変わる場合がある。アセチレンガスの残圧が0.5MPa以下の場合、ボンベからのアセトンの混入も、炎の状態を変化させる。

  25. Contamination Laboratory environment: use of indoor shoes 室内環境 :上履き使用

  26. Contamination Laboratory environment: use of local ventilation 室内環境 :局所排気 Desktop local hood

  27. Contamination from environment Znsignal Aspirate DW DW left for 3days tobacco smoke Flame on Zn signal in flame AAS

  28. Contamination from environment Na signal DW left for 3days Aspirate DW Tobacco smoke Flame on Na signal in flame AAS

  29. Open the drain valve of the compressor after measurement 測定後は必ずドレインを開けてください Drain valve Otherwise, oil and water vapor may be introduced into the AAS, resulting in data imprecision and malfunction of the instrument. ドレイン抜きをしないとオイルを含んだ水分が装置に入り、データ不良、故障の原因になります。

  30. Graphite Furnace

  31. Determination of Pb in tap water(bad example) 水道水中の鉛の定量(悪い例)

  32. Determination of Pb in tap water in Hitachi Lab. 装置条件                         温度プログラム          

  33. Component of a typical borosilicate glass 代表的なホウケイ酸ガラスの組成 Si, B, Al, Na, K, Fe are contained in % level. Others are containedin 0.03%.

  34. Contamination form containers 容器からの汚染 (1) Grass wares should be avoided for inorganic analysis of ppb (ug/L) or lower level. μg/L以下の無機分析で.ガラス容器の使用は避ける。 (2) Plastic wares such as polypropylene (PP), polyethylene(PE) are suitable. But blank level should be checked before use because metal oxides may be added as a plasticizer. PP, PE等の樹脂製の容器が適する。 ただし、可塑剤に金属酸化物が使われている場合があるので、ブランク値の確認をする。 (3) An ultrapure grade or EL-grade acid is preferable to analytical grade or AAS grade. 特級、原子吸光用よりもUltrapureやELグレードの酸が望ましい。

  35. 0.15 As 10μg/L + Pd 100mg/L 0.10 Absorbance 0.05 As 10μg/L 050010001500 Ashing temp.灰化温度 Use of matrix modifier Effect of matrix modifier on arsenic absorbance Asの吸光度に対するマトリックス修飾剤の効果

  36. without modifier with modifier Use of matrix modifier Modifier:Mg(NO3)2 Atomization signal of Al in soil extract. 土壌溶出液中Alの原子吸光信号

  37. Modifier concentration Pd・Mg:500 ppm Ni: 1,000 ppm Mg: 1,000 ppm 差   - 1,000 1,000 900 差   - 800 600 600 差   - 200 1,000 1,200 差   - 400 800 600 差   - 600 600 0 As 灰化  温度  400 1,400 1,400 1,300 Pb 灰化  温度  600 1,400 1,200 1,200 Se 灰化  温度  400 600 1,400 1,600 Sb 灰化  温度  600 1,000 1,400 1,200 Cd 灰化  温度  400 1,000 1,000 400 元素 none Pd・Mg Ni Mg Use of matrix modifier The matrix modifiers for AAS are provided from Kanto Chemicals and Merck. Use of 1000ppm AAS Standard Solution as a matrix modifier is not recommended because they are contaminated with some trace elements.

  38. Determination of Pb in tapwater Sample preparation試料の調製 1)Use acid-washed plastic 25mL volumetric flasks. 酸洗浄した樹脂製のフラスコ25mLを用意する。 2)Dispense 0.2mL of ultra-pure nitric acid into each flask. 高純度硝酸0.2mLを各フラスコに入れる。 3)Dispense 0, 25, 75, 125, 250uL of 1.0mg/L Pb into each flask, and fill with DW. Use these solution as working standards. Pbの標準液1.0mg/Lをマイクロピペッターにて0,25,75 ,125, 250μLを入れ、純水で全量を25mLとし、これを検量線用試料とする。 4)Use a mixture of Pd and Mg(NO3)2 as matrix modifier (1000mg/L each as Pd and Mg). マトリックス修飾剤は Pd+Mg(NO3)2混合液(Pd、Mgそれぞれ1000mg/L)を用意する。

  39. Analysis of data imprecision データ不良の解析 Graphite tube 試料注入口 Injection hole 試料注入口 Light 光源 Electrode電極 Construction of electrothermal atomizer 電気加熱原子化部の構造

  40. Factors for imprecision 再現性不良の原因 Sampling error サンプリング不良 Contamination from environment 周囲環境からの汚染 Wrong temperature program (sample boiling) 温度条件不適(突沸) Contamination of electrode ring 電極リングの汚染 Contamination of rinse port 洗浄ポートの汚染

  41. Factors for imprecision 再現性不良の原因 Sampling error サンプリング不良

  42. Factors for imprecision 再現性不良の原因 Adjusting nozzle position ノズル位置の調整

  43. OK NG Caution on nozzle height ノズル高さに注意

  44. Set the nozzle height very close to injection hole 上下位置はキュベット穴に対し ぎりぎりにセットする Nozzle tip 0~0.5mm Better for low volume low viscosity

  45. Nozzle height can be set without Graphite Tube Camera グラファイト炉カメラなしでノズル高さが合わせられます。 The same distance

  46. Caution on sample volume 注入試料に注意 up to100μL Simple Aqueous solution 単純な水溶液 up to 30μL Organic solvent 有機溶媒

  47. Factors for imprecision 再現性不良の原因 Wrong temperature program (sample boiling) 温度条件不適(突沸)

  48. DC Zeeman method can monitor all stages in heat program直流ゼーマン法は全加熱ステージをモニターできます。 Analysis of Juice sample Hitachi DC Zeeman method enables monitoring for all stages (Drying, Ashing, Atomization), and this helps operator to set up optimal analysis condition. AC Zeeman method can monitor only Atomization stage.

  49. Optimum temperature can be set without monitoring inside of the graphite tube by cameraグラファイトチューブ内をカメラでモニターしなくても、最適な温度が設定できます。

  50. Factors for imprecision 再現性不良の原因 Contamination from environment 周囲環境からの汚染

More Related