1 / 3

Proof by Induction: n! > 2n for n > 3

Learn how to prove n! > 2n for n > 3 in natural numbers using mathematical induction. Follow the step-by-step process shown by the Project Maths Development Team in 2011.

eloise
Download Presentation

Proof by Induction: n! > 2n for n > 3

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. To prove by induction that n! > 2n for n > 3, n  N Next (c) Project Maths Development Team 2011

  2. To prove by induction that n! > 2n for n > 3, n  N Prove :n! > 2n for n = 4 n! = 4! = 24 24 = 16 24 > 16 True for n = 4 Next (c) Project Maths Development Team 2011

  3. To prove by induction that n! > 2n for n > 3, n  N • Assume true for n = k • Therefore k! > 2k • Prove true for n=k+1 Multiply each side by k + 1 (As k>3 hence (k+1) must be positive) (k + 1)k! > (k + 1)2k (k + 1)! >(k + 1)2k (Because (k+1)k!=(k+1)!) • (k + 1)! > 2k + 1(k + 1 > 2 since k > 3) If true for n = k this implies it is true for n = k+1. It is true for n = 4. Hence k! > 2k for n > 3, n  N (c) Project Maths Development Team 2011

More Related