460 likes | 589 Views
C osmic-rays and Particle physics. (based on Brazil-Japan Emulsion Collaboration). Toru Shibata. Aoyama- Gakuin University 17/Aug/2010. April 12, 1912. l a ~ cm. *. l b ~ m. *. l g ~ 10 m. * . r adiation from space !!!. 1933: (Alvarez)
E N D
Cosmic-rays and Particle physics (based on Brazil-Japan Emulsion Collaboration) Toru Shibata Aoyama-Gakuin University 17/Aug/2010
April 12, 1912 la ~ cm * lb ~ m * lg~ 10 m * radiation from space !!! 1933: (Alvarez) east-west asymmetry effect positive charged particle !
cosmic rays magnetic field
q E W SANRIKU (b, l) = (39.2。N, 141.8。E) : our data histogram: simulation Astrop. Phys. 6 (1997) 155 E W
Astrop. Phys. 6 (1997) 155 filled symbols: E-W effect method open symbols: opening-angle method
age of new particles: 1930~1950 1932: positron (Anderson) Dirac Theory 1935: Yukawa hypothesis 1937: m-meson (Anderson & Neddermyer) 1947: p-meson (Lattes, Ochiallini, & Powell) Yukawa Theory (birth of elementary particle physics) 1947: V-particle (Rochester & Butler) strangeness Sakata, Gell-Mann quark model 1948: p-meson with machine (Gardner & Lattes)
cosmic-ray physics after 1950 1-ry CRs 1-ry CRs astrophysics 2-ry CRs 2-ry CRs particle phys. big machine
definitionof“cosmic rays” ●nuclei (p, He, ….., Fe, …) : in narrow sense particle astronomy ● antiparticles (p, He, …) : ● electrons & positrons : ● neutrinos : in wide sense (neutrino astronomy) g-ray astronomy ● g-rays : ●X-rays : in wider sense X-ray astronomy ultraviolet-visible-infrared-radio : related field astronomy infrared astronomy radio astronomy
I. Cosmic-rays and Particle physics after 1950 new particle search“big” machine go to higher energy (>> machine energy ~ GeV) >TeV multiple meson production key to solve difficulty in Field Theory ? Heisenberg: universal length (1939) Wataghin: cutoff momentum (19??) => fireball production Fermi, Landau: thermo-statistical model (1950, 1953) Miesowicze, Cocconi, Niu, Hasegawa: two fireball (1958), H-q.(1961) . . . . . . . .
ICRC International Cosmic Ray Conference 1947: 1st ICRC @ Cracow,Poland 2013: 33th ICRC @ Rio de J., Brazil 2014: World cup @ Rio de Janeiro, Brazil !!! 2016: Olympiad @ Rio de Janeiro, Brazil !!!
sessions in ICRC HE: High Energy Interactions EA: Air shower phenomena MN: Muon, Nutrino OG: Origin of CRs SH: Solar Heliosphere T: Techniques
short history of emulsion chamber in CR research 1952: Emulsion stack => new particle hunting (Bristol) => but poor cost-effectiveness Brass plate emulsion chamber (EC) => A-dependence (Rochester) 1955: EC project starts in INS (Inst. of Nuclear Study, University of Tokyo) Balloon exposure with baby EC (Kobe-group) (Fujimoto comes back from Bristol) E0=1~10TeV 1956: Balloon flight => pt-invariance (Nishimura) 1958: EC exposure at Mt. Norikura => g, hadron spectra 10~100TeV => g, hadron bundle 1959: Letter of Yukawa to Lattes 1962: Brazil-Japan collaboration at Mt. Chacaltaya First exposure of simple-type EC > 1000TeV ~
basic structure of EC _ + shower curve (1987, NIM-A257) hadron(p, n, p) e-, g Pb-jet EM-cascade shower e -, g + Pb => bremsstrahlung, pair-creation => EM cascade shower p +’s hadron+ Pb + p -’s + p 0’s p0 2g EM cascade shower
for Balloon experiment 1 1-ry layer : target layer : 2 spacer : calorimeter : (EC) 3 4 cascade p0 2g
Physics in emulsion chamber _ + ●accelerator: neutrino oscillation (nm nt; OPERA) composition of CRs=> origin, accle., prop. ; anomalies in [e , p] => signal of DM, PBH ? ; ●balloon: exotics => q-nugget, mono-pole . . . ? ●high mountain: forwardhadron physics => nothing new in small q2 ? => very difficult to see with machine (important for the EAS study) LHC
ECs used in Brazil-Japan collaboration 2-types of EC local interaction (C-jet) atmospheric int. (A-jet) “clean” “dirty” H=100 ~ 1000m target p+’s p-’s p 0’s H=1 ~ 2m p0 2g r ~ 1mm r ~ 10cm EC
Physics in Brazil-Japan collaboration personal speculation similarity in multiple meson production H-quantum Feynman-scaling C-jet : d3pg F(E0 ;Eg, pt) = f(x)dx g(pt)2pptdpt Eg with x = Eg/E0 E0 deviation from pt-invariance SH-quantum (break in Feynman-scaling) production cross-sections of g ’s in p-p collision in very forward region ten years earlier than CERN-SPS pt = pgsinq (Eg, pt)i (i=1, . . ,n) (p 0 2g )
A-jet : extremely massive fire-ball with high temperature UH-quantum H-quantum SH-quantum UH-quantum Mass: 1 ~ 2GeV/c2 10 ~ 20GeV/c2 100 ~ 200GeV/c2 < pt>: ~0.3 GeV/c ~0.5 GeV/c ~1.0 GeV/c (temperature) “new state of matter” (H-q, SH-q, UH-q) discovery of “ANDROMEDA” air shower core just before cascade development Exotics: CENTAURO, Geminion, CHIRON, . . .
fireball physics in BJ-collaboration before collision N N X critical parameters: in CMS fireball mass M after collision fireball temperature T (both are quantized) “new state of matter” ? phenomenological stage substantialistic stage essentialistic stage Taketani’s three-stage theory in cognition of nature
Statistical mechanics Quantummechanics Thermodynamics (substantialistic stage ?) (essentialistic stage ?)
1977: R. D. Field and R. P. Feynman, Phys. Rev. D15, 2590 1978: R. P. Feynman, R. D. Field, and G. C. Fox, Phys. Rev. D18, 3320 (1969: “Parton” model by Feynman for SLAC e-p deep inelastic data) ! proton electron parton 1 s = 2
mechanism of multiple meson production (based on “parton” model) (a) lepton-hadron (c) hadron-hadron (b) lepton-lepton
break in pt-invariance in fireball picture break in pt-invariance in “parton” picture H-q -6pt -6pt d3s d3s e e E E d3p d3p : pt-invariance SH-q signal of point-point int. Rutherford scattering UH-q pt(GeV/c) pt(GeV/c)
questions in hadron-hadron collision: (e) (e) (e) (e) q q q q g g (g ) (g ) q q q q (e) (e) (e) (e) (Mfller scattering) (Rutherford scattering !!) ??? ISR data
Why not pT-4, but pT-8? “-8” => many models modifying point-point interaction approach not “essential”, but “acceidental” due to QCD effect (Feynman et al. 1978, Phys. Rev.) not yet asymptotic free in the data available higher order corrections for point-point int. g - q g q q
: Feynman variable : fractional g-ray energy E0 pt = pgsinq (Eg, pt)i (i=1, . . ,n) (p 0 2g )
E0 1TeV (ISR) E0 100TeV (B-J)
1978: Feynman et al., Phys. Rev. D18, 3320 central region (covered by machine) CMS backward forward (covered by EC) our target central region
large pt phenomena: We, CR physicists, have already observed point-point interactions in hadron-hadron collisions in the form of large pt-phenomena!! 1962: M. Oda and Y. Tanaka, J. Phys. Soc. Jpn. 17, Suppl. A-III, 282 1963: S. Miyake, K. Hinotani, and T. Kaneko, J. Phys. Soc. Jpn. 18, 592 multi-cores in air shower observation (far from “normal” pt with ~ 300 MeV/c => heavy 1-ry) 1967: Brazil-Japan Collaboration, Canadian J. Phys. 46, 660 first two-storey-type emulsion chamber (interpreted as H-, SH-quanta productions)
“parton” = quarks, gluons 1990: Nobel prize for Friedman, Kendall, Tayler (MIT-SLAC) We missed a signal of “parton” in CR data much earlier than MIT-SLAC !!!
Exotics : CENTAURO, Geminion, CHIRON, . . . I could not follow these “ZOO-series” , whileI have learned many things from Profs. Lattes, Fujimoto, and Hasegawa I moved to 1-ry CR study with balloon
production cross-sections of g ’s in p-p collision in very forward region ten years earlier than CERN-SPS H.E. EAS study key data for g-ray astronomy p p E0 before collision : Eg ’ E0 X after collision : proton + proton g+ anything s(E0 ,Eg)dEg
Astrop. Phys. 23(2005)510 due to detection bias