650 likes | 1.06k Views
Conservation resource allocation and the Zonation framework. Atte Moilanen, Joona Lehtomäki, Heini Kujala, Federico M. Pouzols, Jarno Leppänen, Laura Meller & Victoria Veach C-BIG - Biodiversity Conservation Informatics Group Dept. of Biosciences, University of Helsinki
E N D
Conservation resource allocation andthe Zonation framework Atte Moilanen, Joona Lehtomäki, Heini Kujala, Federico M. Pouzols, Jarno Leppänen, Laura Meller & Victoria Veach C-BIG - Biodiversity Conservation Informatics Group Dept. of Biosciences, University of Helsinki http://cbig.it.helsinki.fi
Introduction: contents 1h+ • Introduction to conservation resource allocation • Zonation • Illustrative example • Operational principle and features • More examples
Conservation Resource allocation 01
Objective • To identify different (spatial) allocations of conservation resources (actions) best possible long-termconservation outcome (population sizes, persistence) • Limited resources prioritization • Spatial allocation, various forms of land use: protection, management, restoration, offsetting, competing uses • What are the consequences and interactions between different (possibly complementary) actions
Biodiversity features • Often: species • Many others: • Habitat types and properties (e.g. suitability) • Communities • Ecological processes • Ecosystem services • Vegetation classes • Functional traits • Genetic information • Socio-cultural factors • Surrogates, pervasive: complete information usually missing
3 key dimensions • Fundamental quantities of spatial population biology: • Area: the available habitat (spatial amount) • Quality: resource density (e.g. micro-climate) • Aggregation: spatial (network) structure of the habitat Area and quality determine the carrying capacity Aggregation affects the local dynamics and occupancy
3 key dimensions: Quality Area Aggregation
Fundamental quantities Fundamental quantities of spatial population biology
Conservation prioritization: Relevant factors • Spatial distributions and local occurrence levels of biodiversity features (species, communities etc...) • Connectivity and minimum population size requirements • Habitat loss and degradation, landscape change • Climate change • Availability of conservation resources • Socio-political constraints • Pervasive uncertainties about biological facts and economic realities, sparse data
CRA is not the only part of the puzzle – Social Dimension! Knight et al. Cons Biol. 2006.
More about Spatial Conservation Prioritization + Recent review: Kukkala, A. & A. Moilanen. 2013. The core concepts of spatial prioritization in systematic conservation planning. Biological Reviews, 88: 443-464.
The Zonation framework and software 02
Illustrative example: evaluation of the proposed benthic protection areas of New Zealand Leathwick et al. 2008. Novel methods for the design and evaluation of marine protected areas in offshore waters. Conservation Letters, 1: 91-102.
Aim: evaluate proposed New Zealand’s Benthic Protected Areas (BPAs)
Marine protection areas of New Zealand: Data • 1.59 million 1 km2 grid cells • 100 demersal fish species • Habitat models based on 21000 experimental trawls • ~20 environmental variables • Locations of commercial trawls = cost data
Basic Zonation output 1 • Map of priority rank Cell rank 0 - 50% 50 - 75% 75 - 90% 90 - 100% (= 10% best)
Basic output 2: representation of features with different ranks Endemic weighted higher With equal weights Proportion of feature distribution protected 10% of total area Rank (proportion of landscape not under conservation action)
Replacement cost analysis for proposed reserve areas Performance curve for ”ideal” solution Proportion of species distribution protected Proportion of feature distribution protected Curve for forced solution LOSS = COST Proportion of cells removed Rank (proportion of landscape not under conservation action)
Influence of cost Zonation, Full cost Zonation, Ideal free solution Conservation benefit, % of all Proposed BPAs Fishing opportunity cost [%]
Zonation operational principle and features
Zonation • Produces a hierarchical zoning of a landscape • looking for priority sites for conservation • indirectly aiming at species persistence • using large grids
Zonation • Persistence by considering: • Habitat quantity, quality and connectivity • For multiple biodiversity features simultaneously (species, communities, ecoregions, functional traits, etc.) • Can optimize: • Return on investment (ROI) • Targets
Zonation: inputs and outputs • Basic input: • Spatial distributions of biodiversity features as static patterns in raster maps: • Presence • Abundance • Probability • Many more optional inputs: uncertainty, PAs, interactions, etc. • Produces 2 main outputs: • Spatial priority ranking for conservation (map) • Performance curves (x-y plots) • Zonation is not about: • GIS processing • PVAs, dynamic models, etc.
Zonation: inputs and outputs Higher/lowerpriority areas forconservation Performance/ potential for proctection Features Input data GIS Weights Data collection Data analysis Inference/ Decision Data preparation Experts Costs Ecological knowledge Connectivity
A general Zonation workflow Basic output 1 Basic output 2 Lehtomäki, J., Moilanen, A., 2013. Methods and workflow for spatial conservation prioritization using Zonation. Env. Model. & Sof. 47, 128-137.
Basic output 1 • Landscape map showing the ranking
10% top fraction Basic output 2 • Performance: curves of representation of features (or groups) at different rank levels Proportion of feature distribution protected Rank (proportion of landscape not protected)
Additional basic output (3): Post-processing analyses For example: • Comparison of different solutions • Connected sets of sites with similar species compositions can be connected into management landscapes • Tutorial example: do_ppa.bat
Zonation - Basic analyses • Identification of optimal reserve areas • Identification of least valuable areas • Evaluation of conservation areas • Expansion of conservation areas
Major Zonation Features • Species/feature weighting • Species-specific connectivity • Handles uncertainty and costs • Combined species and community level prioritization • Balancing alternative land uses • Landscape condition and retention analysis • Prioritization across multiple administrative regions • Direct link: GIS distribution modeling Zonation
New Graphical User Interface,much improved for Zv3.1 • Improved detection of errors in setups • Manage and monitor multiple analyses • Post-process and explore output • Explore transformed layers used in computations • Explore all output curves interactively • Import/export publication-quality maps • Simple interface for comparing/merging maps
Zonation strategy summarized Minimize loss of weighted range-size rarity = Maximize retention of weighted range-size normalized (rarity corrected) feature richness
in other words Zonation produces a complementarity-based balanced priority ranking through the landscape.
Zonation Meta-algorithm • Start from full landscape • Determine cell that has least marginal value and remove it • Update occurrence levels of features (in the remaining landscape) • Repeat (2 and 3) until no cells remain
0.02 0.0510 0.0523 0.05 0.0765 0.0828 0.0785 0.075 0.0255 0.025 0.1632 0.2601 0.1927 0.1675 0.2191 0.1767 0.16 0.1174 0.1385 0.1204 0.1575 0.1270 0.115 0.1104 0.1204 0.1047 0.102 0.1 0.2041 0.2739 0.4395 0.2409 0.3252 0.2209 0.2094 0.2 0.2602 0.4146 0.3493 0.5604 0.2817 0.3072 0.2670 0.255 1.0 Cell removal Normalized values & Removal sequence Absolute value 4 10 15 5 32 23 20 40 51
0.025 1 0.025 1 0.025 1 0.025 1 0.025 1 0.025 1 0.025 1 0.025 1 0.025 1 0.025 1 1 0.025 1 0.025 0.025 1 0.025 1 0.025 1 1 0.025 0.025 1 1 0.025 0.025 1 1 0.025 0.025 1 0.025 1 1 0.036 0.036 1 0.036 1 0.036 1 1 0.025 1 0.025 0.025 1 0.025 1 0.036 1 1 0.036 0.042 1 0.025 1 1 0.025 0.025 1 0.025 1 0.036 1 0.036 1 0.036 1 1 0.042 1 0.042 1 0.042 0.036 1 1 0.036 1 0.042 1 0.042 1 0.025 0.025 1 0.042 1 1 0.036 0.036 1 1 0.036 1 0.042 1 0.042 1 0.042 1 0.036 1 0.036 1 0.036 1 0.036 1 0.036 1 0.042 0.042 1 1 0.042 1 0.025 0.025 1 0.036 1 1 0.036 1 0.036 1 0.036 1 0.042 1 0.042 1 0.042 0.042 1 1 0.042 0.042 1 1 0.025 0.036 1 1 0.036 1 0.036 1 0.025 0.025 1 0.025 1 0.025 1 1 0.042 1 0.042 1 0.042 0.042 1 1 0.036 1 0.036 1 0.042 0.025 1
0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.036 0.036 0.036 0.036 0.061 0.061 0.061 0.061 0.036 0.036 0.042 0.061 0.061 0.061 0.061 0.036 0.036 0.078 0.042 0.042 0.042 0.036 0.036 0.042 0.042 0.061 0.061 0.042 0.036 0.036 0.078 0.042 0.042 0.042 0.036 0.036 0.078 0.078 0.078 0.042 0.042 0.042 0.061 0.061 0.078 0.078 0.078 0.078 0.042 0.042 0.042 0.042 0.042 0.042 0.067 0.078 0.078 0.078 0.067 0.103 0.103 0.025 0.042 0.042 0.042 0.042 0.036 0.078 0.042 0.025
0.026 1 0.025 0.025 0.026 1 0.026 1 0.025 0.026 1 0.025 0.025 0.026 1 0.025 1 0.026 1 0.026 0.025 0.026 1 0.025 0.025 0.026 1 0.025 0.026 1 1 0.026 0.025 0.026 1 0.025 0.025 0.026 1 0.025 1 0.026 0.026 1 0.025 0.026 1 0.025 0.025 0.026 1 0.025 1 0.026 1 0.026 0.025 1 0.026 0.025 0.025 1 0.026 0.036 0.036 0.036 0.036 0.026 1 0.025 0.026 1 0.025 0.025 1 0.026 1 0.026 0.025 0.036 0.036 0.042 1 0.026 1 0.025 1 0.026 0.025 0.025 1 0.026 0.026 1 0.025 0.036 0.036 0.036 1 0.042 1 0.042 0.042 1 0.036 0.036 1 0.042 0.042 1 0.025 0.026 1 1 0.026 0.025 0.042 1 0.036 0.036 0.036 1 0.042 1 0.042 1 0.042 0.036 0.036 0.036 0.036 0.036 1 0.042 1 0.042 0.042 1 0.025 1 0.026 0.025 0.026 1 0.036 0.036 0.036 0.036 0.042 1 1 0.042 0.042 1 0.042 1 1 0.042 0.042 1 0.025 0.026 1 0.036 0.036 0.036 0.025 1 0.026 0.025 1 0.026 0.026 1 0.025 0.025 0.026 1 1 0.042 0.042 1 1 0.042 1 0.042 0.036 0.036 0.042 1 1 0.026 0.025
Cell removal rule = definition of marginal loss in conservation value = different rules implement different conceptions of conservation value, how is it aggregated across space, time and features?
Cell removal rule • Determines how marginal loss is aggregated when a cell is lost • Four alternatives • Core-area Zonation (CAZ) • Additive benefit function (ABF) • Targeting benefit function (TBF) • Generalized benefit function (GBF) • These alternatives • Have different aims • Value representation differently
Cell removal rules • Core-area Zonation • Cell value is the maximum biological value within the cell, across all features/species • Cell with the smallest (max) value will be removed • Additive benefit function • Cell value is the sum of value across specieswithin the cell • Cell with the smallest sum value will be removed
0.6904 0.60 0.05 0.6316 0.60 0.6316 0.0588 0.7968 0.7059 0.65 0.7059 0.0909 0.3529 0.1053 0.3529 0.40 0.4582 0.30 0.10 0.30 0.05 0.15 0.20 0.15 0.75 0.2941 0.9091 0.9091 0.8514 0.2632 0.5882 1.0 1.0 1.0 2.0 0.50 0.25 0.50 0.5882 1.2032 Cell removal rules Core-area Zonation Species 1 Species 2 Additive benefit function
Zonation: Cell removal principles “More important” “More rare” “less prop. remains”
Core-Area Zonation (CAZ) emphasizes the most valuable feature in the cell proportion of remaining distribution of sp j in cell i in remaining landscape S weight of sp j over cells i over spp j cost of site i CAZ valuation of site i
Cell removal rules: Additive benefit function & Generalized BF Sum over species-specific loss ΔVj; free trade between spp; implicitly emphasizes locations with many species (richness) • ABF uses a power function, which has a smooth shape, and can replicate, for example, the species-area curve • loss of representation => loss of value • GBF has a more flexible shape (incl. sigmoids)
Cell removal rules:Finnish breeding birds – CAZ vs. ABF Additive benefit function Core-area Zonation somewhat emphasizes richness somewhat emphasizes rarity
Other cell removal rules Target-based planning Generalized benefit functions • Below target: 0 value • Above target: power function
What can be done using Zonation?Some Zonation study summaries