1 / 41

MW  11:00-12:15 in Redwood G19 Profs: Serafim Batzoglou, Gill Bejerano TA: Cory McLean

MW  11:00-12:15 in Redwood G19 Profs: Serafim Batzoglou, Gill Bejerano TA: Cory McLean. Lecture 12. Vertebrate Gene Cis-Regulation contd. Vertebrate Gene Regulation. gene (how to) control region (when & where). distal: in 10 6 letters. DNA. DNA binding proteins.

elvin
Download Presentation

MW  11:00-12:15 in Redwood G19 Profs: Serafim Batzoglou, Gill Bejerano TA: Cory McLean

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. MW  11:00-12:15 in Redwood G19 Profs: Serafim Batzoglou, Gill Bejerano TA: Cory McLean http://cs273a.stanford.edu [Bejerano Aut07/08]

  2. Lecture 12 • Vertebrate Gene Cis-Regulation contd. http://cs273a.stanford.edu [Bejerano Aut07/08]

  3. Vertebrate Gene Regulation • gene (how to) • control region(when & where) distal: in 106 letters DNA DNA binding proteins proximal: in 103 letters http://cs273a.stanford.edu [Bejerano Aut07/08]

  4. Vertebrate Transcription Regulation http://cs273a.stanford.edu [Bejerano Aut07/08]

  5. Unicellular vs. Multicellular unicellular multicellular http://cs273a.stanford.edu [Bejerano Aut07/08]

  6. Pol II Transcription • Key components: • Proteins • DNA sequence • DNA epigenetics • Protein components: • General Transcription factors • Activators • Co-activators http://cs273a.stanford.edu [Bejerano Aut07/08]

  7. Activators & Co-Activators Protein - Protein Protein - DNA http://cs273a.stanford.edu [Bejerano Aut07/08]

  8. TFs in the Human Genome Not a lot… http://cs273a.stanford.edu [Bejerano Aut07/08]

  9. Signal Transduction http://cs273a.stanford.edu [Bejerano Aut07/08]

  10. The Core Promoter http://cs273a.stanford.edu [Bejerano Aut07/08]

  11. CpG islands http://cs273a.stanford.edu [Bejerano Aut07/08]

  12. Cis-Regulatory Components • Low level (“atoms”): • Promoter motifs (TATA box, etc) • Transcription factor binding sites (TFBS) • Mid Level: • Promoter • Enhancers • Repressors/Silencers • Insulators/boundary elements • Cis-Regulatory Modules (CRM) • Locus Control Regions (LCR) • High Level: • Gene Expression Domains • Gene Regulatory Networks (GRN) http://cs273a.stanford.edu [Bejerano Aut07/08]

  13. Chromatin Remodeling “off” “on” http://cs273a.stanford.edu [Bejerano Aut07/08]

  14. Tx Factors Binding Sites http://cs273a.stanford.edu [Bejerano Aut07/08]

  15. Distal Transcription Regulatory Elements http://cs273a.stanford.edu [Bejerano Aut07/08]

  16. Enhancers http://cs273a.stanford.edu [Bejerano Aut07/08]

  17. Enhancers: action over very large distances RNAP II Basal factors promoter Enhancer with bound protein http://cs273a.stanford.edu [Bejerano Aut07/08]

  18. Transient Transgenic Enhancer Assay in situ Conserved Element Minimal Promoter Reporter Gene Construct is injected into 1 cell embryos Taken out at embryonic day 10.5-14.5 Assayed for reporter gene activity transgenic http://cs273a.stanford.edu [Bejerano Aut07/08]

  19. Enhancer verification Matched staining in dorsal apical ectodermal ridge (part of limb bud) Matched staining in genital eminence http://cs273a.stanford.edu [Bejerano Aut07/08]

  20. Fly Enhancer Combinatorics http://cs273a.stanford.edu [Bejerano Aut07/08]

  21. Vertebrate Enhancer Combinatorics http://cs273a.stanford.edu [Bejerano Aut07/08]

  22. What are Enhancers? • What do enhancers encode? • Surely a cluster of TF binding sites. • [but TFBS prediction is hard, fraught with false positives] • What else? DNA Structure related properties? • So how do we recognize enhancers? • Sequence conservation across multiple species • [weak but generic] http://cs273a.stanford.edu [Bejerano Aut07/08]

  23. Repressors / Silencers http://cs273a.stanford.edu [Bejerano Aut07/08]

  24. What are Enhancers? Repressors • What do enhancers encode? • Surely a cluster of TF binding sites. • [but TFBS prediction is hard, fraught with false positives] • What else? DNA Structure related properties? • So how do we recognize enhancers? • Sequence conservation across multiple species • [weak but generic] • Verifying repressors is trickier [loss vs. gain of function]. • How do you predict an enhancer from a repressor? Duh... repressors repressors http://cs273a.stanford.edu [Bejerano Aut07/08]

  25. Insulators http://cs273a.stanford.edu [Bejerano Aut07/08]

  26. Gene Expression Domains: Independent http://cs273a.stanford.edu [Bejerano Aut07/08]

  27. Gene Expression Domains: Dependent http://cs273a.stanford.edu [Bejerano Aut07/08]

  28. Correlation with Human Disease [Wang et al, 2000] http://cs273a.stanford.edu [Bejerano Aut07/08]

  29. Other Positional Effects [de Kok et al, 1996] http://cs273a.stanford.edu [Bejerano Aut07/08]

  30. Chromatin Structure http://cs273a.stanford.edu [Bejerano Aut07/08]

  31. Histone Code http://cs273a.stanford.edu [Bejerano Aut07/08]

  32. Epigenetics [Goldberg et al, 2007] http://cs273a.stanford.edu [Bejerano Aut07/08]

  33. More Functional Assays In vitro / in vivo Fragment / BAC Gain / Loss BAC cut and paste http://cs273a.stanford.edu [Bejerano Aut07/08]

  34. Protein & Chromatin Assays • Protein binding assays: • Electrophoretic mobility shift assays (EMSA) / Gel Shift • DNAseI protection • SELEX & CASTing • Chromatin immuno-precipitation (ChIP), ChIP-chip • and various chromatin assays. http://cs273a.stanford.edu [Bejerano Aut07/08]

  35. Gene Regulatory Networks [Davidson & Erwin, 2006] http://cs273a.stanford.edu [Bejerano Aut07/08]

  36. The Hox Paradox [Wray, 2003] http://cs273a.stanford.edu [Bejerano Aut07/08]

  37. The Great Vertebrate-Invertebrate Divide http://cs273a.stanford.edu [Bejerano Aut07/08]

  38. Gene Regulatory Network (GRN) Components • Davidson & Erwin (2006): 4 classes of GRN components: • ‘‘kernels’’ evolutionarily inflexible subcircuits that perform essential upstream functions in building given body parts. • ‘‘plug-ins’’ certain small subcircuits that have been repeatedly co-opted to diverse developmental purposes(regulatory, inc. signal transduction systems) • “I/O switches” that allow or disallow developmental subcircuits to function in a given context (e.g., control of size of homologous body parts, many hox genes) • differentiation gene batteries (execute cell-type specific function, end-players) http://cs273a.stanford.edu [Bejerano Aut07/08]

  39. GRN Kernel properties • Network subcircuits that consist of regulatory genes (i.e., TFs). • They execute the developmental patterning functions required to specify the embryo spatial domain/s in which body part/s will form. • Kernels are dedicated to given developmental functions and are not used elsewhere in development of the organism (though individual genes of the kernel are likely used in many different contexts). • They have a particular form of structure in that the products of multiple regulatory genes of the kernel are required for function of each of the participating cis-regulatory modules of the kernel. • Interference with expression of any one kernel gene will destroy kernel function altogether and is likely to produce the catastrophic phenotype of lack of the body part. • The result is extraordinary conservation of kernel architecture. http://cs273a.stanford.edu [Bejerano Aut07/08]

  40. Kernel example [Davidson & Erwin, 2006] http://cs273a.stanford.edu [Bejerano Aut07/08]

  41. Kernels and Phyla t now http://cs273a.stanford.edu [Bejerano Aut07/08]

More Related