490 likes | 722 Views
Cofunctions , Unit Circle. #2. Quadrants. Quadrants. Quadrants. Quadrants. These function are always positive in these quadrants. Quadrants. A better way to remember which functions are positive. Seniors. Civics. Take. Find all 6 trig function values given Cosθ =-5/13 in Quadrant II.
E N D
Quadrants These function are always positive in these quadrants.
Quadrants A better way to remember which functions are positive. Seniors Civics Take
Find all 6 trig function values given Cosθ=-5/13 in Quadrant II
Find all 6 trig function values with the given information. Sinθ= 3/5 in QII Cosθ= ¼ in QIV Secθ= 5/3 in QI Cotθ= 7/3 in QIII
TEAMS P 50……..#’s 4,6,8,16,18
Cofunctions Find the cofunction for Sin 43°
Find the value of each cofunction. Sin 72° Csc 24° Cot 71° Cos(θ – 42°)
True or False Is Cos 32° < Sin 56°
From 0° to 90° Cos90° = 0 Sin90° =1 Cos0° = 1 Sin0° =0 Cos,Csc,Cot Decrease Sin,Sec,Tan Increase
True or False Determine whether the following are True or False? A) Sin 43° > Cos 29° B) Cot 21° < Tan 82° C) Sec 73° > Csc 27°
TEAMS P 68……#’s 10,12,18,24,28
Unit Circle These are the angles we care about most in Trigonometry.
Reference Angles Find all 6 trigonometric function values at 240 degrees.
Reference Angles Find all 6 trigonometric function values at each of the following angles. 180° 300° 135° Find your reference angle first!
Negative Angle Measures Find all 6 trigonometric function values at -120 degrees.
Negative Angle Measures Find all 6 trigonometric function values at -30 degrees.
Coterminal Angle Measures Find all 6 trigonometric function values at 1020 degrees.
Trigonmetric Functions Find all 6 trig functions at the given angle. Find the reference angle, draw the angle 315° -135° -270° 510° -300°
Solving Right Triangles A 12.2 B 19.3 C
Solving Right Triangles A 16 9 B C
Solving Right Triangles A 12.4 B 18.3 C
Solving Right Triangles A 65° 41’ 5.92 B C
Solving Right Triangles A 19 32° 23’ 29” B C
TEAMS P 88……#’s 12,14,24,26,30
Evaluate the following cos60° + 2sin230°
Evaluate the following tan2120° – 2cot240° Sec2300° - 2cos2150° + tan45° 3tan135° + 4cos(-180°) – 2csc270°
Evaluate the following cot45° – 2sec300° sec2300° - 2sin2150° + tan(-45°) 3tan135° + 4csc(-180°) – 2cos270° sin300° - 2sin240° + sin2(-120°)