360 likes | 499 Views
Károly Kecskeméty Wigner Research Centre for Physics, Budapest, Hungary. Energy spectra of suprathermal and energetic ions at low solar activity. 23rd European Cosmic Ray Symposium, Moscow, 5 July 2012. Outline. e nergy spectra suprathermal 100 keV -1 MeV energetic 1-30 MeV
E N D
KárolyKecskeméty Wigner Research Centre for Physics, Budapest, Hungary Energy spectra of suprathermal and energetic ions at low solar activity 23rd European Cosmic Ray Symposium, Moscow, 5 July 2012
Outline • energy spectra • suprathermal 100 keV-1 MeV • energetic 1-30 MeV • variability, quiet-time periods • protons, radial variation: Helios, 1 AU, Ulysses, Voyager • latitude variation: Ulysses • 3He, heavy nuclei 1-30 MeV/n • populations, acceleration mechanisms • future prospects
Energetic charged particles measurement: counting rates m,Z,q (E,r,,,t) fZ,m,q (x, v, t) differential fluxphase space densitym,Z elemental/isotopic compositionq charge state composition E energy spectrum r, heliocentric radial and latitudinal variationmpitch angle distribution/anisotropy tshort-term: transients, fluctuationslong-term: solar cycle, 22-year
Ionpopulations in the Heliosphere Gloeckler (2008)
Fluence spectrum Mewaldt et al. (2007)
Variability solar/interplanetary activity: fluctuating process high fluxes – localized source, low fluxes - global • solar wind proton flux density: 2x108 /cm2s (high-speed) 4x108 /cm2s (low-speed, Wang, 2010) • suprathermals: ~100 • 1-10 MeV >107 • 100 MeV ~103 • 1 GeV (galactic) factor of <2 (Feldman et al, 1978) ~3 GeV
Variability (100 keV-100 MeV) Gloeckler & Fisk (2006)
Questions, problems • Does a quiet Sun exist? • Which populations are present during quiet times? • How their contribution vary throughout the Heliosphere? • Do they exhibit a 11/22 year variation? • What are the element composition/ionization states? • What are the seed populations of energetic particles? • What is the source of suprathermal ions: continuous solar emission (micro/nano/pico SEP) or CIRs? • Suprathermals at <1 AU? • Heavy ion populations at quiet times (suprathermal + energetic) • Origin of 3He (present for extended time periods)
Quiet time periods • Definition: - ”no event” (depends on solar activity) • - low particle flux (depends on energy) • - low fluctuation level • background problem: pulse-height analysis needed • difficult at <1 MeV, small geometry factor • poor statistics at >1 MeV IMP-8 protons (1-25 MeV)
Particle sources at quiet times accelerated solar wind(suprathermalions) SEP eventremnants micro-/nano-/picoSEP events CIRs/GMIRs (backstreaming at <1 AU) interplanetary shocks turbulence magnetospheric – cometary ions ionizedneutralspick-up anomalous component, TSP
Suprathermal energies solar wind plasma: in turbulent quasi-equilibrium Lorentziank-distribution superhalo: Lin (1998) Gloeckler (2003) up to 100 keV/n pickup: comets, dust, outer sources 1 AU Mason & Gloeckler (2011) ACE, Ulysses: universal spectrum f ~ v-5 J ~ E-1,5 up to ~150 keV particular case of k-distribution seed population for energetic particles
Very quiet periods spectral slope: steepening at >300 keV/n protons -2.7 in 1977 -2.1 in 2007-09 4He -2.6 in 1977 -2.6 to 2.0 in 2007-09 composition: CIR-like 2007-09 1977 Mason & Gloeckler (2011)
Interplanetary acceleration - models • Fisk & Lee (1980): CIR acceleration beyond 1 AU and transport back to 1 AU – shock compression ratio? upstream propagation at 100 keV? • Giacalone et al (2002): acceleration in compression regions • Fisk & Gloeckler (2006) acceleration from stationary isotropic turbulence reproduces the E-1.5 spectral tail (particular case of k-distribution) • Drake et al (2010): magnetic reconnection – also E-1.5 Mason &Gloeckler (2011)
Spectral minimum: 1-30 MeV (1 AU) large fluctuations background (instrumental, neutrals, high-energy?) small size detectors poor statistics <1 proton/day 1996 fluxes are lower at negative magnetic polarity (qA < 0, 1986) Logachev et al (2002)
Protons at 1 AU IMP-8 energy spectrum: good fit with sum oftwo populations J(E) =AE-g+ CE-n solar/heliospheric galactic spectral parameters obtained from best fits to spectra • 1.3 for protons (force-field n = 1) Kecskeméty et al (2011) Gomez et al (2000)
Variation of spectral parameters with solar activity minimum: SH moves downwards, galacticupwards Emin is shifted to lower energies IMP-8,Logachev et al. (2002)
Radial and latitude variation • Observations: use similar instrumentation - semiconductor telescopes • 1-30 MeV, same background reduction method (PHA) • IMP-8 CPME, EIS, CRNC 1 AU • SOHO ERNE, EPHIN 1 AU • Helios 1-2 Kiel exp 0.29-0.98 AU • Ulysses LET 1.4-5.4 AU, -80 to +80 • Voyager 1-2 CRS 1-85 AU, -25 to +30
SOHO ERNE higherbackground EPHIN: wide-angle vs parallel geometry EPHIN Valtonen et al (2001)
SOHO A > 0 A < 0
Helios 1974/76-1985 r: 0.29-0.98 CsE Kiel experiment 3.8-27 MeV/n
Ulysses 1990-2009 r: 1.4-5.4 CsE inclination 80 LET: 1.8-8.5 MeV PHA
Ulysses radial variation -45+ 30 polar radial minimum is observed but in polar region
Ulysses latitudinal variation Witcombe et al. (1995)
Ulysses latitudinal variation 1994-97 + 2006-07 asymmetric pedestal centred at 10 south for both polarities Heliospheric current sheet: shifted southward(Mursula,Hiltula, 2003) streamer belt: shifted towards positive hemisphere(Zieger & Mursula, 1998)
Ulysses energy spectrum Energy spectrum A < 0 fluxes lower polar spectrum flat
Voyager 1-2 Voyager-1 May 2012: 121 AU (heliopause?)
Voyager energy spectrum radial profile
Radial profile 0,3-85 AU near-ecliptic fluxes: shallow minimum at 2-5 AU? 5-20 AU higher activity? polar fluxes: constant?
Fe suprathermal quiet-time energy spectra ACE ULEIS low-FIP ions: 3 distinct groups Zeldovich et al (poster no 451) Fe charge state: 15-16 SEP remnants? poor statistics (ACE SEPICA, B. Klecker) SEP sw corona
3He, He+ nearly absent in solar wind 3He:extended emission periods (Mason, 2007) 3He rich events without obvious solar source – flare remnants or reconnection - quiet Sun? Gomez et al (2000)
Heavy ions ACE, 1 AU (Reames, 1999) ions with anomalous component also in outer Heliosphere no anomalous component flat: SH + galactic
Origin of low-flux ions at 1-30 MeV/n • micro-nano-picoflareSEP events (inner Heliosphere, polarregions) • SEP fluence distribution E-a(Miroshnichenko et al, 2001) • a 1,0 (<103 pfu) a 1,53 (>103 pfu) • solar flare energy distribution • dn/dE = AE-a, a 1,8 (51019 - 31024 J)Hudson (1991) • microflares: a 2,3-2,6 (1027 - 1019 J)Krucker & Benz (1998) • continuation to lower energies? • other active structures below flare threshold: X-ray bright points,disappearing ribbons, etc. • remnants ofearlier large SEP events, CIR post acceleration • (streamer belt) • anomalous, termination shock particles
Future prospects • Large geometry factor, low-background telescopes • heavier nuclei • <1 AU: Solar Orbiter (0.28 AU, 2017), • Solar Probe Plus (0.03 AU, 2018) • Solar Sentinels (6 s/c, 4 at 0.25 AU, 2017?) • suprathermal spectrum • energetic ions: better resolution of small SEPs • exploration of 1-20 AU region (near-ecliptic) • polar regions<1 AU • charge-state measurements at low solar activity