1 / 39

从细胞到国家 —— 共同的异速生长法则

从细胞到国家 —— 共同的异速生长法则. 张江 北京师范大学 系统科学学院. 北京师范大学复杂系统暑期学校 2013. 提纲. 第谷  开普勒  牛顿. Tycho Ottesen Brahe. Johannes Kepler. Sir Isaac Newton. 生物系统. 异速生长. Huxley , Tessier ( 1936 ). Kleiber law: F~M 3/4. Kleiber 1932 : F~M ¾.

eman
Download Presentation

从细胞到国家 —— 共同的异速生长法则

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 从细胞到国家——共同的异速生长法则 张江 北京师范大学 系统科学学院 北京师范大学复杂系统暑期学校2013

  2. 提纲

  3. 第谷开普勒牛顿 Tycho Ottesen Brahe Johannes Kepler Sir Isaac Newton

  4. 生物系统

  5. 异速生长 Huxley , Tessier (1936)

  6. Kleiber law: F~M3/4 Kleiber 1932:F~M¾ Kleiber,M., Body size and metabolism, Hilgardia, 1932,6:315-353

  7. F~M3/4 鼠 培养的动物细胞 线粒体 (动物的肌细胞) West, G.B. and Brown, J.H., Review : the origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization, The Journal of Experimental Biology, 2005,208: 1575-1592

  8. 代谢生态学 • 一个统一的公式: • 其它的异速生长关系: • T~M1/4 • f~M-1/4 • 一些重要常数 • 一生的心跳数~1.5*109 Brown, J.H., Toward a metabolic theory of ecology, Ecology, 2004,85,7: 1771~1789

  9. Rubner(1883)模型

  10. 关于科学家合作的故事 James H. Brown Geoffery West http://www.physicscentral.com/people/2003/west.html

  11. 生命系统中的河流网

  12. 生命系统中的河流网

  13. 生命系统中的河流网 哺乳动物纤维细胞中的线粒体(绿色)和微管(红色)网络

  14. West et al. 模型 • In order for the network to supply the entire volume of the organism, a space-filling fractal-like branching pattern is required. • The final branch of the network (such as the capillary in the circulatory system) is a size-invariant unit • The energy required to distribute resources is minimized West, G.B. and Brown, J.H., A General Model for the Origin of Allometric Scaling Laws in Biology, Science, 1997, 122-126

  15. Banavar模型 J.R. Banavar, A. Maritan, and A. Rinaldo, Size and form in efficient transportation networks, Nature, 399 (1999): 130-132.

  16. Banavar模型 • 基本假设: • 生物体是一个由能量输运网络填充的整体 • 在空间中均匀分布了抽象节点 • 每个节点都与空间邻域节点相连 • 存在一个根节点是能量的唯一来源 J.R. Banavar, A. Maritan, and A. Rinaldo, Size and form in efficient transportation networks, Nature, 399 (1999): 130-132.

  17. Banavar模型 • 两个宏观变量: • F: 流向根节点的总入流 • M: 所有连边上的总流量 • Banavar将导出: • F~Md/(d+1) J.R. Banavar, A. Maritan, and A. Rinaldo, Size and form in efficient transportation networks, Nature, 399 (1999): 130-132.

  18. Banavar模型 • F? • 设每个节点消耗1单位流量 • So, • F~N~ld • 如何导出M? • 优化! l J.R. Banavar, A. Maritan, and A. Rinaldo, Size and form in efficient transportation networks, Nature, 399 (1999): 130-132.

  19. Banavar模型 • 不同的结构对应了不同的M • 什么样的结构可以最小化M? l J.R. Banavar, A. Maritan, and A. Rinaldo, Size and form in efficient transportation networks, Nature, 399 (1999): 130-132.

  20. 一个优化问题 s.t. 如果i,j相邻 入流 l J.R. Banavar, A. Maritan, and A. Rinaldo, Size and form in efficient transportation networks, Nature, 399 (1999): 130-132.

  21. 结果 优化结果是一棵树,且 定义Li为从根到i的最小网络距离, 那么Li ~ r,则: l J.R. Banavar, A. Maritan, and A. Rinaldo, Size and form in efficient transportation networks, Nature, 399 (1999): 130-132.

  22. 食物网、贸易网、点击流网 贸易网 点击流网络 食物网 η>1, 中心化结构 η=1, 效率与稳定性的权衡 η<1, 去中心化结构 Pei-teng Shi,Jing-fei Luo,Peng-hao Wang, Jiang Zhang: Centralized Flow Structure of International Trade Networks for Different Products; International Conference on Management Science & Engineering, 2013.7 Lingfei Wu,Jiang Zhang: The decentralized flow structure of clickstreams on the web; European Physics Journal B (2013) 86: 266 Jiang Zhang,Liangpeng Guo: Scaling Behaviors of Weighted Food Webs as Energy Transportation Networks; Journal of Theoretical Biology 264 (2010) 760–770

  23. 社会经济系统

  24. 城市中的异速生长

  25. 城市中的异速生长 If b>1, scaling efficient If b<1, scaling inefficient If b=1, scaling invariant

  26. 在线社区的异速生长 X=每一天的活跃用户数, Y=这些活跃用户产生的在线活动 Ling-Fei Wu,Jiang Zhang: Accelerating growth and size-dependent distribution of human online activities; Physical Review E 84, 026113, 2011

  27. 世界各国的人口-GDP关系 γ=1.04 γ '=0.79

  28. 建模工作

  29. 随机生长几何图 Small City Big City

  30. 随机生长几何图

  31. 模型的异速生长现象

  32. 模型的异速生长现象

  33. Night light

  34. 实证研究——城市夜光 总灯光亮度 区域大小

  35. 建模研究

  36. 总结 • 异速生长现象在生物和社会系统中普遍存在 • 寻找更广泛的异速生长律:时间与尺度的关系、频率与尺度的关系 • 异速生长的模型; • 寻找牛顿——探索异速生长现象的一般性理论?

  37. THANK YOU

More Related