720 likes | 1.1k Views
New Developments in Electrochemical Cells. Science Update Programme. Education Bureau, HKSAR & Department of Chemistry The University of Hong Kong. June 2002. References. Capacitors www.nec-tokin.net www.faradnet.com Green Energy www.greenenergy.org.uk
E N D
New Developments in Electrochemical Cells Science Update Programme Education Bureau, HKSAR & Department of Chemistry The University of Hong Kong June 2002
References Capacitors www.nec-tokin.net www.faradnet.com Green Energy www.greenenergy.org.uk www.greenenergyohio.org Electric Vehicles Evworld.com Batteries www.nec-tokin.net www.duracell.com Fuel Cells www.fuelcells.com chem..hku.hk/~fuelcell Books: A.J. Bard, L. Faulkner, “Electrochemical Methods”, 2001, Wiley. Derek Pletcher and Frank C. Walsh, “Industrial Electrochemistry”, Chapman and Hall, 1990. C.A. Vincent and B. Scrosati, “Modern Batteries : An Introduction to Electrochemical Power Sources”, Butterworth-Heinemann, 1998. James Larminie and Andrew Dicks, “Fuel Cell Systems Explained”, Wiley, 2000. Utilities www.ifc.com www.gepower.com Portable Power Sources www.nokia.com www.motorola.com Electrochemical Cells, K.Y. Chan, HKU
Multidisciplinary and Integrated Science • Electrochemistry, General Chemistry • Physical Chemistry:Thermodynamics, Kinetics, Transport • Organic Chemistry • Inorganic, Solid State Chemistry • Materials Science • Basics Physics, Energy, Electricity • Environmental Science and Ecological/Biological Issues • Can be discussed with different emphasis, at different levels, and platforms. Electrochemical Cells, K.Y. Chan, HKU
Fundamental Theories and Concepts • Batteries • Fuel Cells • Applications Electrochemical Cells, K.Y. Chan, HKU
Fundamentals Thermodynamics • Relate Reactivity to Electrode Potential • Nernst Equation accounts for concentration(activity) effects • Calculate Electrode Potential from Free Energy Electrochemical Cells, K.Y. Chan, HKU
Al/Al+3 Zn/Zn+2 H2/H+ Cu/Cu2+ H2O/O2 -1.66 -0.760.00.52 1.23 V Electrochemical Activity Series Electrochemical Cells, K.Y. Chan, HKU
Fundamentals Kinetics • Current Rate of reaction (Faraday’s law) • Rate (current) described by Tafel Equation or Butler-Volmer Equation (Bard and Faulkner, Wiley 2001) Electrochemical Cells, K.Y. Chan, HKU
Fundamentals Kinetics from Absolute Rate Theory O* Free energy G nF E O + n e- n F E R Reaction co-ordinate Electrochemical Cells, K.Y. Chan, HKU
Current into electrolyte Electrons out of electrode Electrochemical Cells, K.Y. Chan, HKU
i Concentration or pH effect E Electrochemical Cells, K.Y. Chan, HKU
E Ecell Anode Cathode Electrochemical Cells, K.Y. Chan, HKU
Ref. electrode E-Eref E Ecell Anode Cathode Electrochemical Cells, K.Y. Chan, HKU
Fundamentals Transport and Interfaces • Rate of supply of raw materials : diffusion of active materials • Rate of removal of: products including ions, electrons • ionic vs ohmic resistance • Change of solid interfaces: dentritic growth • Wetting/non-wetting affects gas transport into electrolyte • Selectivity of transport, e.g. cationic membrane Electrochemical Cells, K.Y. Chan, HKU
H2SO4 0.6 KOH ohm-1 cm-1 KCl CH3COOH 10 M concentration Electrochemical Cells, K.Y. Chan, HKU
Activation Ohmic Mass-Transfer Current Density Ideal Voltage Cell Voltage Electrochemical Cells, K.Y. Chan, HKU
Some Terminologies Open Circuit Voltage Equilibrium potential, Standard Potential Overpotential, underpotential Polarization (activation, ohmic, concentration) Capacity mA hr Energy Density W hr kg-1 ,W hr l-1 Power Density W kg-1 ,W l-1 ,W cm-2 Current Density mA cm-2 Electrochemical Cells, K.Y. Chan, HKU
Anode: Oxidation reaction, release electrons to external circuit, negative terminal (galvanic cell) • Cathode: Reduction reaction, receive electrons from external circuit, positive terminal (galnanic cell) • Current Collector: continuous electronic conducting solid phase to collect electrons (in anode) and to distribute electrons (in cathode) • Electrolyte: ionic conducting but electronic insulating, transfer ions from/to electrodes • Separator: hydrophilic porous sheet material to hold a thin layer of electrolyte, electronic insulation Electrochemical Cells, K.Y. Chan, HKU
Polymer Electrolyte: polymeric backbone with fixed charge to allow transport of either cation or anion • Porous Matrix to hold electrolyte: Ceramic, asbestos, “polymers”. • Gel/Paste electrolyte: immobilize electrolyte but allow ionic transport • Molten Salt Electrolyte:e.g. Carbonates • Solid Oxide Electrolyte: oxide ion mobiliity at elevated temperature Electrochemical Cells, K.Y. Chan, HKU
Batteries A. Volta, 1880
Primary Batteries: Zn/C Alkaline Zn/HgO Li metal Secondary Batteries: Lead Acid (Rechargeable) Ni-Cd Ni-MH Li ion Hybrid of Battery and Fuel Cell: Zn-Air Al-Air (Regenerative Fuel Cells) Electrochemical Cells, K.Y. Chan, HKU
Batteries Zinc/Carbon (Leclanché 1880s) • Cathode: 2 MnO2 + H2O + 2e- Mn2O3 + 2OH- • Anode: Zn Zn2+ + 2e- • Overall: 2 MnO2 + Zn + H2O Mn2O3 + Zn2+ + 2OH- • G=-257 kJ mol-1 , Eo = 1.55 V • electrolyte: moist NH4Cl/ZnCl2/MnO2/C powder • current collectors: graphite rod and zinc • Capacity 6 A hr, energy density 80 Whr kg-1 Electrochemical Cells, K.Y. Chan, HKU
Batteries Zinc/Carbon (Leclanché 1880s) Carbon rod current collector (+ve) separator MnO2 based positive paste Zinc can anode (-ve) Electrochemical Cells, K.Y. Chan, HKU
Batteries Lead/Acid Discharge reactions • Cathode: PbO2 + 4H+ +SO42- + 2e- 2H2O + PbSO4 • Anode: Pb + SO42- PbSO4 + 2e- • Overall: PbO2 + Pb + 4H+ + 2SO42- 2PbSO4 + 2H2O • G= -394 kJ mol-1 , Eo = 2.05 V • electrolyte: aqueous H2SO4 • current collectors: both Pb • Capacity: 2.7 Ahr, Energy density 30 Whr kg-1 • cell voltage> 1.23 V, Electrolysis of water kinetically hindered Electrochemical Cells, K.Y. Chan, HKU
Pb/PbSO4 H2/H+ H2O/O2 PbSO4/PbO2 -0.3505 0.01.23 V 1.698 Possible Electrode Pairs? Electrochemical Cells, K.Y. Chan, HKU
Batteries Nickel/Cadmium • Cathode: 2NiO(OH) + 2H2O + 2e- 2Ni(OH)2 + 2OH- • Anode: Cd + 2OH- Cd(OH)2+ 2e- • Overall: 2NiO(OH) + Cd + 2H2O 2Ni(OH)2 + Cd(OH)2 • G= -283 kJ mol-1 , Eo = 1.48 V • electrolyte: aqueous KOH • current collectors: Ni foam and peforated nickel sheet • Capacity: 4 Ahr, energy density: 33 Whr kg-1 Electrochemical Cells, K.Y. Chan, HKU
Batteries Nickel/Metal hydride • Cathode: NiO(OH) + H2O + e- Ni(OH)2 + OH- • Anode: MH + OH- M + H2O + 2e- • Overall: MH + NiO(OH) M + Ni(OH)2 • Metal hydride: AB5 e.g. LaNi5 or AB2, e.g. TiMn2 , ZnMn2 • electrolyte: aqueous KOH • current collectors: Ni foam and peforated nickel sheet • Capacity: 4 Ahr, energy density: 80 Whr kg-1 Electrochemical Cells, K.Y. Chan, HKU
Batteries Nickel/Metal Hydride • Overcharging • Cathode: 2 OH- H2O + ½O2 + 2e- • Anode: charge reserve M + H2O + 2e- MH + OH- • Oxygen dissolves to Anode: 2MH + ½ O2 2M + H2O • Prevent gassing and build up of pressure Electrochemical Cells, K.Y. Chan, HKU
Batteries Lithium Ion • Cathode: xLi+ + LiM2O4 + xe- Li1+xM2O4 • M=Mn,Ti • xLi+ + LiMO2 + xe- Li1+xMO2 • M=Co, Ni • Anode: LiC6 x Li++ x e- + Li1-xC6 • Overall: C6 + LiMO2 LixC6 + Li1-xMO2 • LiMn2O4G= -287 kJ mol-1 , Eo = 2.97 V • Energy density > 100 Whr/kg Electrochemical Cells, K.Y. Chan, HKU
Batteries Lithium Ion Electrolyte Anode • Aprotic Solvent • Gel • Polymer (lower weight) • Li in graphite lattice • Lower activity but safer than Li metal Cathode • Solid Structures for storing Li • Spinels, Olivines, rhombohedral NASICON Electrochemical Cells, K.Y. Chan, HKU
Batteries and Fuel Cells Fuel Cells • ReFuel • Continuous • Open system • Mostly Gas/Liquid Fuel • High energy density • Micro to Mega Watts Batteries • Recharge • Intermittent • Closed system • Mostly solid • High power density Electrochemical Cells, K.Y. Chan, HKU
Fuel Cells • Efficient conversion of Chemical Energy to useful energy (without losing to heat, mechanical linkages) • Environmentally friendly • Flexible: from micro to mega • Materials and Nanotechnology Electrochemical Cells, K.Y. Chan, HKU
Fuel Cells Classification according to electrolyte • Alkaline Fue Cells • Proton Exchange Membrane (PEM) • Phosphoric Acid • Molten Carbonate • Solid Oxide Electrolyte Electrochemical Cells, K.Y. Chan, HKU
燃料電池發電的原理 CxHyOz ===> CO2 + H2O + e- 負極﹕燃料(氫氣﹐酒精﹐ 葡萄糖等) 負極 電解液 電能 正極 正極 ﹕氧氣 ( 氧化劑 ) O2 + e- ===> H2O Electrochemical Cells, K.Y. Chan, HKU
Fuel Cells Chemical Energy Electrical Energy Electrochemical Cells, K.Y. Chan, HKU
Activation Ohmic Mass-Transfer Current Density Ideal Voltage Cell Voltage Electrochemical Cells, K.Y. Chan, HKU
Diversity of Technology andMaterials Problems in Fuel Cells • Fuel • Oxidant • Catalyst • Container • Control • Transport • Storage Electrochemical Cells, K.Y. Chan, HKU
Fuels: Hydrogen Metals Natural Gas Small Hydrocarbons (methanol, glucose) Oxidant: air oxygen halides oxides Catalysts: platinum metals metal oxides macrocycles Catalyst Support: Porous Carbon Ceramic Matrix Molecular Sieves Polymer Container and Movable Parts: Alloys Ceramic Polymers Transport/Electrolyte: Proton Exchange Membranes PTFE (Teflon) Solid Electrolyte Storage: Metal Hydride Electrochemical Cells, K.Y. Chan, HKU
Fuels • Hydrogen H2+2OH-2H2O +2e- 2e- +½ O2+H2O 2 OH- • Methanol CH3OH + H2O CO2 + 6H+ +6e- 6e- +1½ O2+6H+ 3H2O • Aluminium Al + 4OH-Al(OH)4- +3e- 4e- +O2+2H2O 4 OH- • Borohydride NaBH4 + 8 OH- NaBO2 + 6H2O + 8e- • Methane (natural gas) • Octane : demonstrated in SOFC half cell Electrochemical Cells, K.Y. Chan, HKU
Thermochemistry Electrochemical Cells, K.Y. Chan, HKU
Micro and Nanostructured Electrodes: • Catalyst Support: High Surface Carbon • Size Effects of Catalysts • Controlled Porosity • Controlled Wetting • Maxinum Gas-Liquid-Solid Interface • Minimize ohmic resistance • Minimize ionic resistance Electrochemical Cells, K.Y. Chan, HKU
Scanning Tunneling Spectroscopy Electrochemical Cells, K.Y. Chan, HKU
Catalysts • Platinum is the most important for both anode and cathode • Platinum can be replaced by Ag, Mn, Co, only for oxygen reduction in alkaline medium • Platinum subject to CO poisoning (impure H2) • Binary/Ternary system, macrocycle, bifunctional • Stability/Life of nanometals Electrochemical Cells, K.Y. Chan, HKU
Maximum peak current density at 52.5~77.6% Co, one order of magnitude higher than that of pure Pt particles. One possible role of cobalt in promoting the catalysis of platinum, is the removal of COadCOOHad intermediates. Chi et al., Catalysis Letters, 71 (2001) 21. Electrochemical Cells, K.Y. Chan, HKU
Catalysts • Oxygen Cathode is most limiting and is present in most fuel cells • Non-platinum cathode catalyst can tolerant cross over effect. • At high temperature, no precious metal or no catalysts is needed in MCFC and SOFC Electrochemical Cells, K.Y. Chan, HKU
Performances of different air cathode Electrochemical Cells, K.Y. Chan, HKU
H2 H+ e- Gas Diffusion Electrodes Electronic circuit: continuous solid phase Ionic circuit: Continuous electrolyte phase Materials flow circuit: feed of reactancts Chan et al. , Electrochimica Acta, 32 (1987), 1227;33 (1988) 1767. Tang and Chan, Electroanal. Chem. 334 (1992) 65. Electrochemical Cells, K.Y. Chan, HKU
Single air cathode Electrochemical Cells, K.Y. Chan, HKU
Electrolyte • Alkaline electrolyte (first deployed for Apollo mission) • Phosphoric Acid 180 C • Polymer Electrolyte • Cross Over • Stability (CO2 removal in alkaline) • Solid Oxide (YSZ, doped Ceria) • Shunt Current / Leak Current Electrochemical Cells, K.Y. Chan, HKU
Ce Ce Ce Ce Y Y Ce Ce Ce Ce Ce Ce O2- O2- O2- Zr O2- O2- O2- O2- O2- O2- SOFC Electrolyte • Ytrium Stabilized Zirconia • Doped Ceria (Cerium Oxide) • O2- conductivity at 600~800 C Electrochemical Cells, K.Y. Chan, HKU