1 / 42

• Univers fini ou infini ? • Relativité • Modèles cosmologiques • Le modèle du Big Bang

Cosmologie. • Univers fini ou infini ? • Relativité • Modèles cosmologiques • Le modèle du Big Bang • Le principe anthropique. Univers fini ou infini ?. Newton : tente d’appliquer la gravitation universelle à l’ensemble de l’Univers

ember
Download Presentation

• Univers fini ou infini ? • Relativité • Modèles cosmologiques • Le modèle du Big Bang

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Cosmologie • Univers fini ou infini ? • Relativité • Modèles cosmologiques • Le modèle du Big Bang • Le principe anthropique

  2. Univers fini ou infini ? Newton : tente d’appliquer la gravitation universelle à l’ensemble de l’Univers • Si Univers fini → toute la matière devrait s’effondrer vers le centre Sauf si l’Univers est en rotation – Mais par rapport à quoi ? • Si Univers infini → différentes manières d’envisager le problème conduisent à des solutions contradictoires → Newton est passé à autre chose Théorème de Gauss → le seul Univers infini et uniforme possible est un Univers vide de matière Rem : en poussant un peu son raisonnement, Newton aurait pu prédire l’expansion de l’Univers !!!

  3. Univers fini ou infini ? - 2 Le paradoxe d’Olbers Pourquoi fait-il noir la nuit ? Si Univers infini et homogène → toutes les lignes de visée devraient rencontrer la surface d’une étoile → le ciel devrait être aussi lumineux que la surface du soleil Olbers invoqua l’absorption de la lumière (par des poussières) Conservation de l’énergie → solution d’Olbers ne marche pas car les poussières s’échaufferaient jusqu’à émettre autant que les étoiles Heinrich Olbers (1758-1840)

  4. Relativité Équations de Maxwell et invariance 1864 : Maxwell présente ses équations de l’électromagnétisme → ondes électromagnétiques se propagent dans le vide à la vitesse c ≈ 300 000 km/s Problème : les équations de Maxwell ne sont pas invariantes par la transformation de Galilée : où vR est la vitesse (orientée selon l’axe x) du référentiel R′ par rapport au référentiel R, les deux référentiels étant supposés d’inertie J. C. Maxwell (1831-1879)

  5. Relativité - 2 Éther et vitesse de la lumière Dans quel milieu se propagent les ondes électromagnétiques ? On imagine qu’elles se propagent dans l’éther, un milieu encore à découvrir… 1887 : Albert Michelson tente de mesurer le mouvement de la Terre par rapport à l’éther en mesurant la vitesse de la lumière dans deux directions perpendiculaires vTerre/c≈ 10–4→ il construit un interféromètre très précis → résultat négatif : c est la même dans toutes les directions

  6. Relativité - 3 La relativité restreinte Deux problèmes liés, une même solution… 1905 : Albert Einstein propose d’admettre comme postulat fondamental que : Un observateur quelconque mesure toujours la même valeur pour la vitesse de la lumière dans le vide, quel que soit son propre mouvement → c est une constante fondamentale (c = 299 792 458 m/s) → théorie de la relativité restreinte Albert Einstein (1879-1955)

  7. 1) M h 2) R vΔtR Relativité - 4 Ralentissement du temps Soit un observateur M en mouvement à une vitesse v par rapport à un autre R au repos Les deux observateurs mesurent le temps mis par la lumière pour parcourir une même distance 1) 2)

  8. Relativité - 5 Principe d’équivalence • Tous les corps tombent à la même vitesse dans le vide (Galilée) → Masse inerteMI = masse gravifiqueMG (Newton) → les effets (locaux) d’un champ gravifique sont équivalents à ceux d’une accélération du référentiel de l’observateur (Einstein) → premier pas vers la théorie de la relativité générale

  9. Relativité - 6 La relativité générale Gravitation↔ courbure de l’espace-temps à 4 dimensions → représentation géométrique de la gravitation • Pour Newton : action à distance par un mécanisme inconnu • Pour Einstein : déformation de l’espace-temps Les corps soumis à la gravitation suivent des géodésiques d’un espace-temps courbe • Mêmes résultats que Newton si les champs sont faibles • Écarts croissants avec l’intensité du champ

  10. Relativité - 7 Quelques prédictions de la relativité générale • Avance du périhélie de Mercure • Courbure des rayons lumineux à proximité d’une masse importante – éclipse de 1919 – mirages gravitationnels • Ondes gravitationnelles – pulsars binaires : allongement de la période orbitale • Ralentissement du temps gravitationnel : – mesuré par décalage des raies à la surface d’astres compacts (Terre : 10–9 – naine blanche : 6% – étoile à neutrons : 30%)

  11. Modèles cosmologiques La relativité générale permet de décrire la structure et l’évolution de l’Univers dans son ensemble → cosmologie Géométrie de l’espace L’espace peut être à courbure positive, négative ou nulle • Courbure positive : espace fini mais non limité • Courbure négative : espace infini • Courbure nulle : espace euclidien (plat), infini

  12. Modèles cosmologiques - 2 Le principe cosmologique Pour pouvoir, à partir d’observations de notre portion d’Univers, tester des modèles représentant l’Univers dans son ensemble, il faut faire l’hypothèse que notre région est représentative de l’Univers → on suppose que n’importe quelle partie suffisamment grande de l’Univers est représentative de l’Univers dans son ensemble C’est le principe cosmologique (il est nécessaire pour pouvoir faire de la cosmologie une science) N.B. En pratique, suffisamment grand = de taille supérieure à 500 millions d’A.L.

  13. Modèles cosmologiques - 3 Équation de Friedmann-Lemaître • Conséquence du principe cosmologique : L’Univers est homogène à grande échelle • On le suppose également isotrope à grande échelle → on obtient une forme simple des équations d’Einstein de la relativité générale : Équation de Friedmann-Lemaître R = facteur d’échelle ρ = densité de matière k = paramètre de courbure

  14. Modèles cosmologiques - 4 Constante cosmologique En 1917, Einstein se rend compte que ses équations n’ont pas de solution statique Or, l’expansion de l’Univers n’avait pas encore été découverte → il modifie les équations en ajoutant une terme contenant la constante cosmologiqueΛ: En choisissant bien la valeur de Λ, on peut obtenir une solution statique Après que l’expansion de l’Univers fut découverte, Einstein considéra la constante cosmologique comme la plus grande erreur de sa carrière

  15. Modèles cosmologiques - 5 Densité critique Paramètre de densité : • Ω0 > 1 : univers elliptique, fermé • Ω0 = 1 : univers parabolique (plat), ouvert Λ = 0 • Ω0 < 1 : univers hyperbolique, ouvert → la densité de matière détermine le destin de l’Univers Meilleures estimations : Ωm,0 ≈ 0.3 (m : matière visible + sombre)

  16. Modèles cosmologiques - 6 Le Big Bang Univers en expansion continuelle → si on remonte dans le temps : • le facteur d’échelle R diminue • la densité ρ augmente → on arrive à un état où R → 0 et ρ→ ∞ → commencement (de l’Univers, de l’espace-temps…) = Big Bang (Fred Hoyle, années 1950) Commencement → création ??? → débat plus philosophique que scientifique Georges Lemaître

  17. Modèles cosmologiques - 7 L’état stationnaire L’idée d’un commencement de l’Univers déplait à certains → théorie de l’état stationnaire (Gold, Bondi & Hoyle, 1948) basée sur le principe cosmologique parfait : l’Univers apparaît le même en tous lieux et tous temps Mais les galaxies s’éloignent les unes des autres → création continue de matière pour conserver ρ constant (~ 1 atome de H par m3 par milliard d’années) Variante :état quasi stationnaire (Hoyle, Burbidge & Narlikar, 1993) : « minibangs » Fred Hoyle

  18. Modèles cosmologiques - 8 Le rayonnement de fond cosmologique 1964 : Penzias et Wilson désirent mesurer l’émission radio de la Voie Lactée → ils découvrent un rayonnement isotrope et non saisonnier → ne peut pas venir de l’atmosphère ni de la Voie Lactée Mis en contact avec les cosmologistes Dicke et Peebles → interprété comme rayonnement résiduel des premiers temps de l’Univers (CMB) (existence prédite par Gamov, spectre de corps noir par Dorochkevitch et Novikov) (succès 1) Robert Wilson et Arno Penzias

  19. Modèles cosmologiques - 9 La victoire du Big Bang ? Le CMB est interprété comme le reliquat d’un état antérieur de l’Univers, beaucoup plus chaud (lorsque la matière était ionisée, donc opaque), refroidi à 2.7 K par l’expansion de l’Univers → coup très dur pour l’état stationnaire Leur hypothèse pour « sauver les meubles » : rayonnement stellaire diffusé par des « bâtonnets métalliques » présents dans la matière interstellaire Difficulté : comment expliquer une isotropie aussi parfaite ? Spectre du CMB (COBE)

  20. Le modèle du Big Bang Création de la matière (t = 10−32 s ; T = 1026 K ; ρ = 1073 kg/m3) • Émergence d’une « soupe » de quarks, électrons, photons, neutrinos • En principe, création de paires particules – antiparticules • Comment expliquer que l’on n’observe que de la matière dans l’Univers ? → on suppose une asymétrie : création de 1 000 000 001 particules pour 1 000 000 000 antiparticules (épicycle 1) • annihilation de toutes les paires particule – antiparticule → photons • la matière actuelle est le petit reliquat de cette gigantesque annihilation

  21. Le modèle du Big Bang – 2 Formation des protons et neutrons (t = 10−4 s ; T = 1012 K ; ρ = 1017 kg/m3) • Les quarks se combinent en nucléons • L’énergie est si élevée que les transmutations proton → neutron équilibrent les transmutations neutron → proton → au départ, nombre de neutrons Nn = nombre de protons Np • Lorsque T diminue, la réaction la plus favorable énergétiquement l’emporte → le rapport Nn / Np diminue • Lorsque T = 1010 K, 4He devient stable mais est inaccessible car l’étape obligée 2H reste instable → les neutrons restent libres et le rapport Nn / Np continue à baisser

  22. Le modèle du Big Bang – 3 Formation de l’hélium (t = 100 s ; T = 109 K ; ρ = 105 kg/m3) • 2H devient stable → les neutrons peuvent s’incorporer aux noyaux de 2H et sont sauvés ! • Ensuite, les noyaux 2H se combinent en 4He • À ce moment, la proportion est de 1 neutron pour 7 protons → 2 neutrons pour 14 protons → un noyau 4He pour 12 noyaux 1H → proportion en masse : 4/(4+12) = 25% → prédiction confirmée par les observations (succès 2)

  23. Le modèle du Big Bang – 4 Arrêt de la nucléosynthèse primordiale (t = 12 jours ; T = 107 K ; ρ = 10−3 kg/m3) • Les fusions 4He + 1H et 4He + 4He donneraient des noyaux de masses atomiques 5 et 8 • Or, il n’existe pas de noyaux stables ayant ces masses → la nucléosynthèse s’arrête là (à part un peu de 3He et 7Li) • Dans les étoiles, le problème est contourné par la réaction triple α • Cette réaction demande des densités plus élevées et un temps plus long que disponible à cette étape du Big Bang → cette solution n’est pas disponible en nucléosynthèse cosmologique

  24. Le modèle du Big Bang – 5 Résultats de la nucléosynthèse primordiale • Les abondances prédites par les calculs de nucléosynthèse primordiale sont sensibles à la densité de matière baryonique → il faut qu’une même valeur de la densité prédise les abondances cosmologiques observées (succès 3) • Cela allait bien jusqu’aux résultats du WMAP, qui impliquent une abondance de 7Li 2 à 3 × plus grande qu’observé dans les étoiles vieilles → diffusion ? (épicycle 2)

  25. Le modèle du Big Bang – 6 La densité baryonique Pour obtenir l’abondance primordiale observée des éléments légers, il faut une valeur bien précise de la densité baryonique : Ωb,0 ≈ 0.06 C’est supérieur à la valeur estimée à partir des observations : Ωb,0(obs) ≈ 0.01 Mais inférieur aux estimations de masse dans les amas de galaxies : Ωm,0 ≈ 0.3 → on en conclut qu’une partie de la matière sombre (Ω0 ≈ 0.05) est constituée de baryons (matière ordinaire) mais la plus grande partie (Ω0 ≈ 0.24) serait constituée de matière exotique (ex :WIMPs) non encore découverte (épicycle 3)

  26. Le modèle du Big Bang – 7 La constante cosmologique Les observations de Supernovae lointaines et l’analyse statistique des mirages gravitationnels suggèrent que l’expansion de l’Univers est accélérée → retour de la constante cosmologique : Λ0≈ 0.7 (interprétée comme une énergie du vide)

  27. Le modèle du Big Bang – 8 Énergie du vide et expansion Pourquoi l’énergie du vide accélère-t-elle l’expansion ? • Le taux d’expansion est lié à la densité de masse–énergie • Espace en expansion → la densité de matière diminue → le taux d’expansion diminue progressivement • Mais la densité d’énergie du vide est constante (ne diminue pas avec l’expansion) → maintient le taux d’expansion constant (quand domine) → expansion exponentielle

  28. • C’est un peu comme si, constatant que les orbites des planètes sont presque des cercles, on concluait qu’elles doivent être des cercles → retour de Platon… Le modèle du Big Bang – 9 L’Univers plat • On aurait donc : Ωm,0 ≈ 0.3 et Λ0≈ 0.7 → Ω0 + Λ0 ≈ 1 • Or, les modèles avec Ω + Λ = 1 sont des univers plats → pour des raisons philosophiques, beaucoup de cosmologistes pensent que, si la courbure est presque nulle, alors elle doit être nulle : Ω0 + Λ0 ≈ 1 →Ω0 + Λ0 ≡ 1

  29. Le modèle du Big Bang – 10 L’inflation Comment expliquer que les conditions initiales sélectionnent, parmi une infinité de modèles à courbure quelconque, justement celui à courbure nulle ? 1981 : Alan Guth propose la théorie de l’inflation primordiale • D’après les théoriciens, aux températures très élevées (1026 K), les forces s’unifieraient → il n’y aurait qu’un seul type de particule + un vide unifié de densité >>> vide actuel C’est ce vide unifié qui serait responsable de la phase d’inflation (épicycle 4) Alan Guth

  30. Le modèle du Big Bang – 11 L’inflation • t < 10–33 s : les photons dominent → expansion rapide mais ralentie • t ~ 10–33 s : densité des photons < celle du vide unifié → inflation : expansion rapide non ralentie, taille de l’Univers × ~1030 • t ~ 10–32 s : la température chute sous la valeur d’unification → les photons dominent à nouveau → expansion ralentie à nouveau • Pendant l’inflation, l’expansion énorme annihile toute courbure pré-existante → après l’inflation, l’Univers est plat

  31. Le modèle du Big Bang – 12 L’origine du rayonnement de fond cosmologique • Tant que T > 3000 K, la matière est essentiellement ionisée → son opacité est grande (elle est pratiquement opaque) • Lorsque T < 3000 K, les électrons et protons se combinent pour former des atomes d’hydrogène → l’opacité chute brusquement → la matière devient transparente → les photons se propagent sans perturbation (découplage) → leur longueur d’onde croît avec l’expansion de l’espace → λ0 ~ 1000 λdécouplage → T0 ~ 1/1000 Tdécouplage ~ 3 K

  32. Le modèle du Big Bang – 13 L’âge de l’Univers L’âge de l’Univers peut être calculé à partir de H0, Ω0 et Λ0 L’âge des plus vieilles étoiles de notre Galaxie (amas globulaires) est estimé à 13 milliards d’années → tout modèle cosmologique prédisant un âge de l’Univers < 13 × 109ans est en conflit avec les modèles d’évolution stellaire → c’est tout juste pour le « nouveau modèle standard » (H0 = 72, Ω0 = 0.3, Λ0 = 0.7) H0Ω0Λ0Âge (109 ans) 72 1.0 0.0 9.0 72 0.3 0.0 11.0 72 0.3 0.7 13.1 60 1.0 0.0 10.9 60 0.3 0.0 13.2 60 0.3 0.7 15.7

  33. Le principe anthropique Principe anthropique (du grec anthropos = homme) Quelles sont les conséquences sur les lois de la physique que l’on peut déduire de l’existence même de l’humanité ? Exemple : ce n’est pas par hasard si l’âge actuel de l’Univers est de quelques milliards d’années • si l’Univers était beaucoup plus jeune : la vie et l’intelligence n’auraient pas eu le temps de se développer → l’Univers doit avoir au moins quelques milliards d’années → c’est la version la plus faible du principe anthropique (version « triviale »)

  34. Le principe anthropique – 2 Nucléosynthèse des noyaux plus lourds que l’hélium • Pas de noyau stable de masse 5 ou 8 uma → la nucléosynthèse primordiale s’arrête à 4He → seule la nucléosynthèse stellaire (triple α) permet de passer au 12C 8Be très instable → se désintègre généralement avant 4He + 8Be → 12C Mais… Cette réaction est favorisée par l’existence d’un état excité de 12C d’énergie très proche de celle de 4He + 8Be (résonance) L’existence de cet état excité à 7.68 MeV avait été prédite par Fred Hoyle en 1953 sur base de ces considérations Il fut découvert peu après par Dunbar, Pixley et al. (1953)

  35. Le principe anthropique fort Les constantes de la physique ont été ajustées pour permettre l’existence de cet état excité… … et, plus généralement, notre existence ! Le principe anthropique – 3 Le principe anthropique faible Nous existons, nous sommes faits de C, O,… → la nucléosynthèse stellaire a pu aller au-delà de 4He → la réaction triple α se produit dans les étoiles → il existe un état excité du 12C à une énergie proche de 12.7 MeV

  36. Le principe anthropique – 4 Application du principe anthropique faible Le temps caractéristique d’apparition de la vie intelligente est soit : (1) beaucoup plus court que la durée de vie du Soleil (2) du même ordre de grandeur (3) beaucoup plus long • Si (1) nous serions probablement apparus beaucoup plus tôt • (2) est une coïncidence peu probable entre des phénomènes qui n’ont aucun rapport entre eux • (3) est donc l’hypothèse la plus probable → il doit y avoir peu de civilisations intelligentes dans la Galaxie

  37. Le principe anthropique – 5 Le dessein intelligent Il existe un certain nombre de coïncidences liées aux valeurs des constantes fondamentales → cela a amené certains à soutenir que : Les constantes et les lois de la nature ont été ajustées pour permettre notre existence… … et, même, que toute l’évolution biologique, avec l’apparition de structures si complexes, si bien ajustées, ne pourrait pas résulter du hasard… … mais serait guidée vers un but (nous, évidemment !) par un être supérieur… → le dessein intelligent, avatar pseudo scientifique du créationnisme

  38. Le principe anthropique – 6 Pertinence du dessein intelligent ? 1. Ce n’est pas une science, car une condition essentielle de toute théorie scientifique est d’être testable, donc réfutable Ce n’est pas le cas du dessein intelligent car : quelque soit le résultat d’une expérience, ses défenseurs pourront arguer que : « telle est la volonté de l’être supérieur » → croyance et non science !

  39. Le principe anthropique – 7 Pertinence du dessein intelligent ? 2. Plutôt que de chercher une explication rationnelle, on s’en remet à une intelligence supérieure… CQFD… → il s’agit d’une paresse, d’une démission de l’esprit 3. Il s’agit d’un manque de modestie car c’est croire que si nous ne pouvons pas encore expliquer quelque chose, ce ne sera jamais explicable… Qui nous croyons-nous donc ?

  40. « Il y a deux choses infinies : l’Univers et la stupidité humaine. Et je ne suis pas certain pour la première des deux. » Albert Einstein Le principe anthropique – 8 Pourquoi le dessein intelligent ? • Premier traumatisme (Copernic) : la Terre n’est plus au centre de l’Univers • Deuxième traumatisme (Darwin) : l’homme n’est qu’un animal parmi les autres… et le produit du hasard de l’évolution → difficile à admettre, notre ego en a pris un coup !

  41. Le prof… Le principe anthropique – 9 THE END

  42. Cosmologie • Univers fini ou infini ? • Relativité • Modèles cosmologiques • Le modèle du Big Bang • Le principe anthropique Fin du chapitre…

More Related