1 / 16

Detector description for fast simulation

The Vienna Fast Simulation Tool for Charged Tracks (LiC Detector Toy) enables quick responses to local detector modifications without replacing full simulation. This tool offers a simple, fast, and user-friendly approach to test out promising detector modifications effectively. It simplifies detector descriptions for easy comparisons and can be run on a laptop for speedy results. Embrace fast simulation for rapid detector analysis and utilize full simulation for comprehensive verification.

emcclellan
Download Presentation

Detector description for fast simulation

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Detector description for fast simulation as used by theVienna Fast Simulation Tool for Charged Tracks(“LiC Detector Toy”)

  2. Why fast simulation? • Achieve quick response to local detector modifications, but not intended to replace full simulation • Doesn’t make sense to try detector modifications using the full simulation and reconstruction chain MOKKA/MARLIN (distributed among different institutes, would take months) • Use full simulation to make an ‘ultimate check’ on a promising detector modification • Simple to use, even by non experts • Doesn’t demand much preparation time • Quick results, can be installed on a laptop • Effect of various detector modifications can quickly be resolved • Human readable, simplified detector description should be standardized to make results comparable

  3. The Vienna Fast Simulation Tool • Simple, but flexible and powerful tool, written in MatLab • Detector design studies • Geometry: cylinders (barrel) or planes (forward/rear) • Material budget, resolutions, inefficiencies • Simulation • Solenoid magnetic field, helix track model • Multiple scattering, measurement errors and inefficiencies • No further corruption, therefore no pattern recognition • Strips and pads, uniform and gaussian errors (in TPC with diffusion corr.) • Reconstruction • Kalman filter • Optimal linear estimator according to Gauss-Markov (no corruption) • Fitted parameters and corresponding covariances at the beamtube • Output • Resolution of the reconstructed track parameters inside the beam tube • Impact parameters (projected and in space) • Test quantities (pulls, χ2, etc.)

  4. Subsequent Vertex Fit • Fitted tracks as input to the VERTIGO/RAVE toolkit; • Interface is the Harvester‘s standard CSV format; • Successfully tested with 10- and 1000-prong events. Tracks from barrel region Tracks from forward region

  5. Basic detector description(VTX) [1]: Detector Outline Document (DOD) for the LDC, Aug. 2006 [2]: M. Vos: Pixel R&D at IFIC Valencia, SiLC Meeting, Torino, Dec. 2007

  6. Basic detector description(SIT, SET) [3]: V. Saveliev, A. Savoy-Navarro, M. Vos: Silicon Tracking, ILD Meeting, Zeuthen, Jan. 2008 [4]: M. Vos: The silicon tracker elements, SiLC phone conference, 06.02.2008

  7. Basic detector description(TPC) [5]: R. Settles: E-mail communication, 25.01.2008 [6]: V. Lepeltier: Private communication, 2006 [7]: MOKKA Database, http://www-flc.desy.de/ldcoptimization/tools/mokkamodels.php

  8. Basic detector description (forward/rear)

  9. Basic detector description (forward/rear)

  10. Display of basic detector description

  11. Display of basic detector description

  12. Barrel input sheet 04 Vertex Detector (VTX) 05 06 Number of layers : 6 07 Description (optional) : |-Beamt.-|----------Vertex detector------------| 08 Names of the layers (opt.) : XBT, VTX1, VTX2, VTX3, VTX4, VTX5 09 Radii [mm] : 14, 16, 26, 37, 48, 60, 10 Upper limit in z [mm] : 3000, 50, 120, 120, 120, 120 11 Lower limit in z [mm] : -3000, -50, -120, -120, -120, -120 12 Efficiency RPhi : 0, 0.95, 0.95, 0.95, 0.95, 0.95 13 Efficiency 2nd coord. (eg. z): -1 14 Stereo angle alpha [Rad] : pi/2 15 Thickness [rad. lengths] : 0.0025, 0.0014, 0.0014, 0.0014, 0.0014, 0.0014 16 error distribution : 1 17 0 normal-sigma(RPhi) [1e-6m] : 18 sigma(z) [1e-6m] : 19 1 uniform-d(RPhi) [1e-6m] : 24 20 d(z) [1e-6m] : 24 21 22 Silicon Inner Tracker (SIT) 23 24 Number of layers : 3 25 Description (optional) : |--Inner tracker--|TPC inner wall| 26 Names of the layers (opt.) : SIT1, SIT2, XTPCW 27 Radii [mm] : 160, 270, 300 28 Upper limit in z [mm] : 380, 660, 2160 29 Lower limit in z [mm] : -380, -660, -2160 30 Efficiency RPhi : 0.95, 0.95, 0 31 Efficiency 2nd coord. (eg. z): 0.95, 0.95, -1 32 Stereo angle alpha [Rad] : pi/2 33 Thickness [rad. lengths] : 0.005, 0.005, 0.0116 34 error distribution : 1 35 0 normal-sigma(RPhi) [1e-6m] : 36 sigma(z) [1e-6m] : 37 1 uniform-d(RPhi) [1e-6m] : 35 38 d(z) [1e-6m] : 35 39

  13. Barrel input sheet 40 Time Projection Chamber (TPC) 41 sigma^2=sigma0^2+sigma1^2*sin(beta)^2+Cdiff^2*6mm/h*sin(theta)*Ldrift[m] 42 Number of layers : 196 43 Radii [mm] : 300,1580 44 Upper limit in z [mm] : 2160 45 Lower limit in z [mm] : -2160 46 Efficiency RPhi : 0.999 47 Efficiency z : 0.999 48 Thickness [rad. lengths] : 0.0000125 49 sigma0(RPhi) [1e-6m] : 50 50 sigma1(RPhi) [1e-6m] : 900 51 Cdiff(RPhi) [1e-6m/sqrt(m)] : 53 52 sigma0(z) [1e-6m] : 15 53 sigma1(z) [1e-6m] : 0 54 Cdiff(z) [1e-6m/sqrt(m)] : 580 55 56 Silicon External Tracker (SET) 57 58 Number of layers : 3 59 Description (optional) : |TPC outer wall|-External Tracker-| 60 Names of the layers (opt.) : XTPCW2, SET1, SET2 61 Radii [mm] : 1580, 1600, 1610 62 Upper limit in z [mm] : 2160, 2500, 2500 63 Lower limit in z [mm] : -2160, -2500, -2500 64 Efficiency RPhi : 0, 0.95, 0.95 65 Efficiency 2nd coord. (eg. z): -1, 0.95, 0.95 66 Stereo angle alpha [Rad] : pi/2 67 Thickness [rad. lengths] : 0.0151 0.0065, 0.0065 68 error distribution : 1 69 0 normal-sigma(RPhi) [1e-6m] : 70 sigma(z) [1e-6m] : 71 1 uniform-d(RPhi) [1e-6m] : 50 72 d(z) [1e-6m] : 50 73 74 Magnetic field and beam spot 75 76 Solenoid magnetic field [T] : 4 77 Range in x [mm] : -0.0021 0.0021 78 Range in y [mm] : -1e-05 1e-05 79 Range in z [mm] : -1.04 1.04

  14. Barrel input sheet 04 Forward module 1 05 06 Number of layers : 3 07 Description (optional) : 08 Names of the layers (opt.): FTD1, FTD2, FTD3 09 z positions [mm] : 220, 350, 500 10 Inner radius [mm] : 29, 32, 35 11 Outer radius [mm] : 140, 140, 210 12 Efficiency u : 0.95 13 Efficiency v : -1 14 Angle 1st coord. (u) [Rad]: 0 15 Angle 2nd coord. (v) [Rad]: pi/2 16 Thickness [rad. lengths] : 0.003 17 error distribution : 1 18 0 normal-sigma(u) [1e-6m] : 19 sigma(v) [1e-6m] : 20 1 uniform-d(u) [1e-6m] : 35 21 d(v) [1e-6m] : 35 22 23 Forward module 2 24 25 Number of layers : 4 26 Description (optional) : 27 Names of the layers (opt.): FTD4, FTD5, FTD6, FTD7, XTPCEC 28 z positions [mm] : 850, 1200, 1550, 1900, 2160 29 Inner radius [mm] : 51, 72, 93, 113, 300 30 Outer radius [mm] : 270, 290, 290, 290, 1580 31 Efficiency u : 0.95, 0.95, 0.95, 0.95, 0 32 Efficiency v : 0.95, 0.95, 0.95, 0.95, -1 33 Angle 1st coord. (u) [Rad]: 0*pi/180 34 Angle 2nd coord. (v) [Rad]: 90*pi/180 35 Thickness [rad. lengths] : 0.003,0.003, 0.003, 0.003, 0.15 36 error distribution : 1 37 0 normal-sigma(u) [1e-6m] : 38 sigma(v) [1e-6m] : 39 1 uniform-d(u) [1e-6m] : 35 40 d(v) [1e-6m] : 35 41 42 Rear module 1 43 44 Number of layers : -1 45 Description (optional) : 46 Names of the layers (opt.): 47 z positions [mm] : 48 Inner radius [mm] : 49 Outer radius [mm] : 50 Efficiency u : 51 Efficiency v : 52 Angle 1st coord. (u) [Rad]: 53 Angle 2nd coord. (v) [Rad]: 54 Thickness [rad. lengths] : 55 error distribution : 56 0 normal-sigma(u) [1e-6m] : 57 sigma(v) [1e-6m] : 58 1 uniform-d(u) [1e-6m] : 59 d(v) [1e-6m] : 60 61 Rear module 2 62 63 Number of layers : -1 64 Description (optional) : 65 Names of the layers (opt.): 66 z positions [mm] : 67 Inner radius [mm] : 68 Outer radius [mm] : 69 Efficiency u : 70 Efficiency v : 71 Angle 1st coord. (u) [Rad]: 72 Angle 2nd coord. (v) [Rad]: 73 Thickness [rad. lengths] : 74 error distribution : 75 0 normal-sigma(u) [1e-6m] : 76 sigma(v) [1e-6m] : 77 1 uniform-d(u) [1e-6m] : 78 d(v) [1e-6m] :

  15. DETECTOR DESCRIPTION FOR FAST SIMULATION • BASIC IDEA: • Parallel to full detector description, define a basic detector description, limited to cylinders in the barrel and planes in the forward region. • It should serve as a starting point for local detector studies of the trackers. • Without agreement on a common starting version results of different detector optimization studies will never be comparable (neither with fast simulation, nor with MOKKA/MARLIN). • Increases flexibility and speed, and yields useful and comparable results, which may be validated by full simulation once in a while.

  16. The Vienna Fast Simulation Tool for charged tracks (LDT). Info on the web: http://stop.itp.tuwien.ac.at/websvn/ ==> lictoy Acknowledgements The software was designed and developed by the Vienna ILC Project Group in response to encouragement from the SiLC R&D Project. Efficient helix tracking was actively supported by W. Mitaroff. Special thanks are due to R. Frühwirth for the Kalman filter algorithms used in the program.

More Related