1 / 17

Fast Multicomputation with Asynchronous Strategy

Fast Multicomputation with Asynchronous Strategy. IEEE Trans. On Computers. Vol. 56 NO. 2, FEB. 2007 Wu-C. Yang, D.J. Guan, and C.S. Laih 報告人 : 9603007D 洪清波 報告大綱 : 一 . Introduction 二 . Recoding Method 三 . Asynchronous Strategy for Sparse Forms SS 1 , DS 1.

Download Presentation

Fast Multicomputation with Asynchronous Strategy

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Fast Multicomputation with Asynchronous Strategy IEEE Trans. On Computers. Vol. 56 NO. 2, FEB. 2007 Wu-C. Yang, D.J. Guan, and C.S. Laih 報告人: 9603007D 洪清波 報告大綱: 一. Introduction 二. Recoding Method 三. Asynchronous Strategy for Sparse Forms SS1, DS1

  2. 一. Introduction(1/3) 公開金鑰: ECC: xA + yB, RSA: axby Exam: 8410 = (01010100)2 = x xi compute result W(xi) 0 c = 2 * 0 0 0 1 c = 2c + A A 1 0 c = 2c 2A 0 1 c = 2c + A 5A 1 0 c = 2c 10A 0 1 c = 2c + A 21A 1 0 c = 2c 42A 0 0 c = 2c 84A 0

  3. 一. Introduction(2/3) 計算: xA + yB Exam: x = (01010)2 = 1010 y= (01110)2 = 1410 xi yi compute result W(xi,yi) 0 0 c = 2 * 0 0 0 1 1 c = 2c + A + B A+B 1 0 1 c = 2c + B 2A+3B 1 1 1 c = 2c + A + B 5A+7B 1 0 0 c = 2c 10A+14B 0 Synchronous: (xi,yi), i = j Asynchronous: (xi,yi), i ≠ j

  4. 一. Introduction(3/3) Improvement Strategy: Pre-computing (memory sufficient) Recoding: Two Sparse Form, DJM, JSF (memory limited) Asynchronous: SS1, DS1 (memory limited)

  5. 二. Recoding Method(1/3) 1. B. S. D (binary signed-digit) expected W(x) = 1/3n Two Sparse Form expected W(x,y)=(1 – (2/3)2)n = 5/9n ≈ 0.556n

  6. 二. Recoding Method(2/3) 2. D. J. M method D. J. M expected W(x,y) ≈ 0.518n

  7. 二. Recoding Method(3/3) 3. J. S. F method (Joint Sparse Form) J. S. F expected W(x,y) ≈ 0.5n when n→∞

  8. 1. SS1 method 三. Asynchronous Strategy for Sparse Forms

  9. 1. SS1 method example: 計算: xA + yB Exam: x = (01010100)2 = 8410 y= (0010- 0- 0)2 = 2210 i 7 6 5 4 3 2 1 0 state SS1 S0 S0→Sx Sx Sx Sx Sx Sx Sx→S0 compute SS1 c=2*0 2c+A 2c 2c+A+2B 2c 2c+A-2B 2c 2(c-B) BSD c=2*0 2c+A 2c+B 2c+A 2c-B 2c+A 2c-B 2c result SS1 0 A 2A 5A+2B 10A+4B 21A+6B 42A+12B 84A+22B BSD 0 A 2A+B 5A+2B 10A+3B 21A+6B 42A+11B 84A+22B W(x,y) SS1 0 1 0 1 0 1 1 0 BSD 0 1 1 1 1 1 1 0 三. Asynchronous Strategy for Sparse Forms

  10. State S0: in line 5 W1 = W2; in line 6 if xi = 1 then W2 decreased by 1 State Sx: xi:0 yj:î 0 î 0 î0 î0 î 0 î0 î0 î0 î0 î 0 …0 î… î k (k-1)/2 k:1, 3, 5, … xi:î yj: 0 î 0 î0 î 0 î0 î0 î 0 î 0 î0 î0 î… î 0 …0 k (k+1)/2 k:1, 3, 5, … xi:0 yj:0 0 î î 0 0 î0 î î0 î 0 0 î0 î0 î î0 î 0 î 0 0 …î î… 0 k  k/2 k:2, 4, 6, … xi:î yj:î î 0 0 î î0 î 0 0 î0 î î0 î 0 î 0 0 î0 î0 î î… 0 0 …î k  k/2 k:2, 4, 6, …

  11. Pa|b a: ith digit, b: (i + 1)st xi+1xixi-1 Parse form: P0 = 2/3, PÎ = 1/3 Proof: no two consecutive digits nonzero. a. Let P0|0 = p, PÎ|0 = 1 – p b. P0 = P0 • P0|0 + PÎ • P0|Î  2/3 = 2/3• p + 1/3• 1  p = 1/2

  12. Paα|bβ where xi = a, xi+1 = b, yi = α, yi+1 = β Proof: x and y are independent  Paα|bβ = Pa|b• Pα|β

  13. Pbβ Paα|bβ 4/9 1/4 “ “ “ “ “ “ 1/9 1 2/9 ½ “ “ “ “ “ “

  14. DS1 method (1/3)

  15. DS1 method (2/3)

  16. DS1 method (3/3)

More Related