480 likes | 651 Views
NMR N uclear M agnetic R esonance. Proton NMR: Symmetry. Index. NMR-basics. H-NMR. Homotopic protons : A 2 spin System. Chemical shift equivalence : Isochronous nuclei. These nuclei are interchangeable by symmetry or rapid exchange.
E N D
NMRNuclear Magnetic Resonance ProtonNMR: Symmetry Index NMR-basics H-NMR
Homotopic protons: A2 spin System Chemical shift equivalence : Isochronous nuclei These nuclei are interchangeable by symmetry or rapid exchange Protons are equivalent in chiral and achiral environment
Homotopic protons examples CH2Cl2 CH2CF2 A2X2 A2 A4
Enantiotopic Protons Plane of symmetry A2X3 A2X d =6.15 J = 53.6 Hz Enantiotopic protons are Equivalent in Achiral environment (like CDCl3) Non-equivalent in Chiral environment (optically active solvent)
A2X2 spin system?? AA’XX’ H1 & H2 => same shift : chemically equivalent (homotopic) 3JH1-F4=>cis 3JH2-F4 =>trans The two protons are coupled to the same nuclei with different coupling! Magnetic Non-Equivalence
JH1-H2 JH1-H4 Magnetic Equivalence The 2 H geminal to Fluorine are enantiotopic The 2 H geminal to Chlorine are enantiotopic The 2 H(1,3) and2 H(2,4) are chemically equivalent Is this an A2M2X2 spin system? These protons are chemically equivalent but are magnetically non-equivalent because they have different couplings with neighbors AA’MM’XX spin system
No symmetry: Asymmetric center * ABX A B Protons A and B have different shifts: they are Diastereotopic Accidental overlap can occur producing deceptively simple spin system
H1-NMR OH CH3 CH
Dissymmetric center Plane of symmetry Enantiotopic groups Hb1 = Hb2 Ha1 = Ha2 Diastereotopic protons A2B2X
X AB AB AB X
2 dissymmetric centers in symmetrical molecule Me Me H HOOC H COOH H H H H H COOH H COOH Me Me Me Symmetrical : C2 axis Enantiotopic protons Symmetrical : s plane Diastereotopic protons CH CH2 HA HB Mixture of 2 isomers
* * d H1 = d H2 d Me1 = d Me2 Equivalence, non-equivalence and symmetry d H1 d H2 d Me1 d Me2 d H1 d H2 AB d H3 d H4 AB d H3=d H4A2
Example of dissymmetric spin system d B = 3.55 d A = 3.40 2JAB = 9.4 Hz 3JA-Me = 3JB-Me = 7.0 Hz ABX3 dq
Chemical Shift Non-Equivalence over a distance Diastereotopic protons * AB AB 2 doublets
HA1 = HA2 HB1 = HB2 HA1HB1 HA2HB2 Magnetic Equivalence Magnetic equivalence JA1-B1 JA2-B1 Enantiotopic protons: A1 and A2 are Magnetically different Diastereototopic protons: AA’BB’
AA’BB’ 2 sets of homotopic protons : magnetically non-equivalent
Spin System: Pople Notation • Each Chemical Shift is designated by a letter • Dn-> Difference in Shift in Hz • J-> Coupling in Hz • If the ratio Dn/J is Small(<8),Letters used to designate the shift are closeAB, ABC …This represent case of second order spectra: These spectra must be simulated with the help of quantum mechanic equations. Such programs are available on Nuts or Mestrec or Spectrometer software. This case is also called strongly coupled • If the ratio Dn/J is large(>8),Letters used to designate the shift are farAM, AX …This case give rise to first order type spectra Is is also refer to as weakly coupled case
Pople Notation A2X(if the shift difference of CH2 and CH is large compare to coupling). A2B(if the shift difference of CH2 and CH is small compare to coupling). 3 Spins AMX -> if the 3 spins have large chemical shift difference ABX -> if 2 spins are close and 1 is far away ABC -> if 3 spins are close When nuclei have identical shift but different magnetic coupling, prime symbol is used. For example: AA’BB’ or AA’XX’
M X A X Jtrans Jcis M AA’BB’C JAX = Jcis = 10 Hz JAM = Jtrans = 17 Hz JMX = Jgem = 2 Hz A : dd
Virtual Coupling Virtual coupling First order Same shift CH2-OH CH3 broad CH2b
Me broad doublet Virtual Coupling A2B2CX3 Because of the close shifts of ABC protons we observe “virtual coupling”
Virtual Coupling : Symmetrical chains 1 2 3 4 1) CO2Me – CH2 – CH2 – CO2Me A2 A2 A4 Singlet 1 2 3 4 5 2) CO2Me – CH2 – CH2 – CH2 – CO2Me A2 X2 A2 A4X2 Triplet, Quintet 1 2 3 4 5 3) CO2Me – CH2 – CH2 – CH2 – CH2 – CO2Me A2 X2 X2 A2 A2 A2’ X2 X2’ Complex spectra Same shift, different J with A/A’ Virtual coupling
Virtual Coupling 3) CO2Me – CH2 – CH2 – CH2 – CH2 – CO2Me
Ph Br H Ph H1 H2 H Br Br H H1 H2 Ph H Br Ph Symmetrical Molecules with 2 chiral centers 1r, 3r; erythro 1r, 3s; Meso H1 = H2 H1 = H2 diastereotopic protons ABX2 Enantiotopic protons Magnetically non-equivalent AA’XX’ Due to fast rotation, J is average A2X2
COOH COOH H1 H1 H1 H1 OH OH H H H2’ H2’ H2 H2 OH OH H H H3’ H3’ H3 H3 COOH COOH Chiral Centers in Symmetrical Molecules Erythro: axis of symmetry Meso: plane of symmetry H1 H1’ diastereotopic H1 H1’ diastereotopic H3 H3’ diastereotopic H3 H3’ diastereotopic Group1 = Group3 Group1 = Group3 H2 = H2’ enantiotopic H2 H2’ diastereotopic
X HA X HA X HA X HA R R R R HB HB HB HB X HA HA X HA HA R R R R HB HB HB HB X X Chiral Centers in polymers Isotactic polymer AB Syndiotactic polymer A = B A2
Calculating Shifts for simple aliphatic compounds d = 0.23 + SSi(d) CH3Cld(calc)=2.76 d(exp.)=3.1 CH2Cl2d(calc)=5.29 d(exp.)=5.3 CHCl3d(calc)=7.82 d(exp.)=7.27
Calculating Shifts for aliphatic compounds d = 0.933 + SSi(d) 1 2 3 e.g. CH3-CO-CO-CH3 Subst. Effect value - C2-C3 +0.244 =O (at C2) +1.021 =O (at C3) +0.004 -CR3 (at C3) -0.038 SSi(d) +1.231 d = 0.933 + 1.231 = 2.164 Experimental = 2.23
Ph OEt C C H1 H2 Calculating Shifts for olefinic compounds H1 d = 5.23 + Phgem + OEttrans + 1.35 + (-1.28) d = 5.32 H2 d = 5.23 + Phtrans + OEtgem + (-0.10) + 1.18 d = 6.33
Z isomer effect Base 5.23 Ph (gem) 1.43 CN (cis) 0.78 COORconj *(trans) 0.33 Total 7.77 E isomer effect Base 5.23 Ph (gem) 1.43 CN (trans) 0.58 COORconj * (cis) 1.02 Total 8.26 Calculating Shifts for olefinic compounds (deciding which isomer) Experimental: 8.22 ppm Which one ?? * Double bond is further conjugated
Aromatic substitution pattern: ortho AA’ XX’ Typical spectra for ortho (symmetrical)
Aromatic substituent pattern t J=8.1 t J=1.8 dt J=7.7, 1.5 ddd J=8.1, 2.2, 1.1
Aromatic substituent pattern td J=7.4, 1.1 dd J=8.1, 0.7 ~td J=8.1, 1.5 dd J=7.7, 1.5
C5H9NO4 3H 3H 2H 1H NO2 t d CH3 O CH C CH3 CH2 O q q
C5H8O CH3 CH2 CH CH t, J=7.4 CHO Trans J CHO, d J=8.1 Hz ddt, J=15.8, 8.1, 1.5 CH2 dt, J=15.8, 6.9
C4H6O2 I = C – H/2 + 1 = 2 H CH3 O s C C C H H O dd 6.6, 1.5 dd 14.0, 1.5 Jtrans = 14.0 Jcis = 6.6 2Jgem = 1.5 dd 14.0, 6.6 CH=
6’ 3 400 MHz 5’ 6 4’ 6, d (9.2) 3, d(2.4) 5 3’ 5, dd 9.2, 2.4 6’, dt 7.9, 1.0 3’, ddd 5.0, 1.5, 0.9 5’, ddd 7.9, 7.4, 1.6 4’, ddd 7.4, 5.0 , 1.0 80 MHz
NEXT Proton and Heteronuclear NMR Index NMR-basics H-NMR NMR-Symmetry Heteronuclear-NMR