1 / 22

Other Angle Relationships in Circles

Other Angle Relationships in Circles. Objectives/Assignment. Use angles formed by tangents and chords to solve problems in geometry. Use angles formed by lines that intersect a circle to solve problems. Using Tangents and Chords.

emmet
Download Presentation

Other Angle Relationships in Circles

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Other Angle Relationships in Circles

  2. Objectives/Assignment • Use angles formed by tangents and chords to solve problems in geometry. • Use angles formed by lines that intersect a circle to solve problems.

  3. Using Tangents and Chords • You know that measure of an angle inscribed in a circle is half the measure of its intercepted arc. This is true even if one side of the angle is tangent to the circle. mADB = ½m

  4. Tangent to a Chord Conjecture • If a tangent and a chord intersect at a point on a circle, then the measure of each angle formed is one half the measure of its intercepted arc. m1= ½m m2= ½m

  5. Ex. 1: Finding Angle and Arc Measures • Line m is tangent to the circle. Find the measure of the red angle or arc. • Solution: m1= ½ m1= ½ (150°) m1= 75° 150°

  6. Ex. 2: Finding Angle and Arc Measures • Line m is tangent to the circle. Find the measure of the red angle or arc. • Solution: m = 2(130°) m = 260° 130°

  7. Ex. 3: Finding an Angle Measure (9x + 20)° • In the diagram below, is tangent to the circle. Find mCBD • Solution: mCBD = ½ m 5x = ½(9x + 20) 10x = 9x +20 x = 20 mCBD = 5(20°) = 100° 5x° D

  8. Lines Intersecting Inside or Outside a Circle • If two lines intersect a circle, there are three (3) places where the lines can intersect. on the circle

  9. Inside the circle

  10. Outside the circle

  11. Lines Intersecting • You know how to find angle and arc measures when lines intersect ON THE CIRCLE. • You can use the following theorems to find the measures when the lines intersect INSIDE or OUTSIDE the circle.

  12. m1 = ½( m +m ) m2 = ½( m + m ) Chords intersecting Inside the circle • If two chords intersect in the interior of a circle, then the measure of each angle is one half the sum of the measures of the arcs intercepted by the angle and its vertical angle.

  13. m1 = ½ m( - m ) Tangent and Secant Exterior Intersections • If a tangent and a secant, two tangents or two secants intercept in the EXTERIOR of a circle, then the measure of the angle formed is one half the difference of the measures of the intercepted arcs.

  14. Tangent and Secant Exterior Intersections • If a tangent and a secant, two tangents or two secants intercept in the EXTERIOR of a circle, then the measure of the angle formed is one half the difference of the measures of the intercepted arcs. m2 = ½ m( - m )

  15. Tangent and Secant Exterior Intersections • If a tangent and a secant, two tangents or two secants intercept in the EXTERIOR of a circle, then the measure of the angle formed is one half the difference of the measures of the intercepted arcs. 3 m3 = ½ m( - m )

  16. Ex. 4: Finding the Measure of an Angle Formed by Two Chords 106° • Find the value of x • Solution: x° = ½ (m +m x° = ½ (106° + 174°) x = 140 x° 174° Apply Theorem 10.13 Substitute values Simplify

  17. mGHF = ½ m( - m ) Ex. 5: Tangent & Secant Intersections 200° • Find the value of x Solution: 72° = ½ (200° - x°) 144 = 200 - x° - 56 = -x 56 = x x° 72° Apply Theorem 10.14 Substitute values. Multiply each side by 2. Subtract 200 from both sides. Divide by -1 to eliminate negatives.

  18. mGHF = ½ m( - m ) Ex. 6: Tangent & Secant Intersections Because and make a whole circle, m =360°-92°=268° x° 92° • Find the value of x Solution: = ½ (268 - 92) = ½ (176) = 88 Apply Theorem 10.14 Substitute values. Subtract Multiply

  19. Ex. 7: Describing the View from Mount Rainier • You are on top of Mount Rainier on a clear day. You are about 2.73 miles above sea level. Find the measure of the arc that represents the part of Earth you can see.

  20. Ex. 7: Describing the View from Mount Rainier • You are on top of Mount Rainier on a clear day. You are about 2.73 miles above sea level. Find the measure of the arc that represents the part of Earth you can see.

  21. Ex. 7: Describing the View from Mount Rainier • and are tangent to the Earth. You can solve right ∆BCA to see that mCBA  87.9°. So, mCBD  175.8°. Let m = x° using Trig Ratios

  22. 175.8  ½[(360 – x) – x] 175.8  ½(360 – 2x) 175.8  180 – x x  4.2 Apply Theorem 10.14. Simplify. Distributive Property. Solve for x. From the peak, you can see an arc about 4°.

More Related