710 likes | 839 Views
Proof-nets and semantic applications. Alain Lecomte ESSLLI2002. e+. t-. e-. t+. child. Semantic proof nets. child. x:e, child: e t |- child(x) : t hence : child: et |- x.child(x):e t. run :. e+. t-. x. e-. t+. x. child. run :. e+. t-. x. e-. t+. x. child.
E N D
Proof-nets and semantic applications Alain Lecomte ESSLLI2002
e+ t- e- t+ child Semantic proof nets • child x:e, child: et |- child(x) : t hence : child: et |- x.child(x):et
run : e+ t- x e- t+ x child
run : e+ t- x e- t+ x child
run : e+ t- x e- t+ x child
run : e+ t- x x e- t+ x child x.child(x)
run : e+ t- x x e- t+ x child x.child(x)
each, every… • A determiner like every, each… decomposes into : • A quantifier, for instance : type : (et)t • A connective, for instance : type : t(tt)
needs two predicates (e t) for obtaining one proposition (t) • A determiner is therefore of type (et)((et)t)
A determiner is therefore associated with a sequent: • Its « semantic » is represented by its proof
C deduction
remark • With a very remarkable step : an application of the contraction rule! • necessity of working inside Intuitionistic linear logic with exponentials • The exact sequent which encodes the determiner is : !e !e t ( t t ), ( !e t ) t ( t ) (( t ) t ) |-- --o --o --o --o --o --o --o --o
Representation of the proof c (!e –o t) –o ((!e –o t) –o t)
every child c child (!e –o t) –o t
every child likes to play c likes to play t child
Application - + + A A –o B +
Application A - B +
A + Abstraction B -
A + Abstraction B - B –o A +
Syntactic proof-nets • Proof-nets for Lambek calculus • Like PN for MILL + • condition on semi-planarity
every child plays 1) unfolding s+ np - s - np\s + np + (s/(np\s)) - n + s - n - child np\s - plays s + (s/(np\s))/n - every
every child plays 2) links s+ np - s - np\s + np + (s/(np\s)) - n + s - n - child np\s - plays s + (s/(np\s))/n - every
Attention! 2) links WRONG ! s+ np - s - np\s + np + (s/(np\s)) - n + s - n - child np\s - plays s + (s/(np\s))/n - every
Parsing • through homomorphism • H(s) = t • H(np) = !e • H(n) = !e –o t • H(A/B) = H(B\A) = H(B) –o H(A)
every child plays s+ np - s - np\s + np + (s/(np\s)) - n + s - n - child np\s - plays s + (s/(np\s))/n - every
every child plays 3) homomorphism t !e t !e –o t + !e (!e –o t) –o t !e –o t t !e –o t child !e –o t plays t+ (!e –o t) –o ((!e –o t) –ot)) every
semantic recipes • child : x.child(x) • every : P.Q.(x.(P(x)Q(x)) • plays : x.play(x)
d e+ t- !e- t+ child • represented by proof-nets :
e+ t- !e- t+ plays • represented by proof-nets : d
every c (!e –o t) –o ((!e –o t) –o t)
plugging lexical semantic types to the homomorphic PN by cut
d e+ t- !e- t+ child t !e t !e –o t + !e (!e –o t) –o t !e –o t t !e –o t child !e –o t plays t+ (!e –o t) –o ((!e –o t) –ot)) every CUT
t !e t !e –o t + !e t !e (!e –o t) –o t t !e –o t plays t+ (!e –o t) –o ((!e –o t) –ot)) every d child
d e+ t- !e- t+ plays t !e t !e –o t + !e t !e (!e –o t) –o t t !e –o t plays t+ (!e –o t) –o ((!e –o t) –ot)) every d child CUT
t !e d t !e –o t + !e t !e (!e –o t) –o t t plays t+ (!e –o t) –o ((!e –o t) –ot)) every d child
PNevery t !e d t !e –o t + !e t !e (!e –o t) –o t t plays t+ (!e –o t) –o ((!e –o t) –ot)) every d child CUT
d !e t c plays t+ d child
d !e t c plays t+ d child
d !e t c plays t+ d child
d !e t c plays x t+ d child
d !e t c plays x t+ d child
d !e t c plays x plays t+ d child
d !e t c plays x plays t+ d child child
d child(x) !e t c plays x plays t+ d child child
d plays(x) child(x) !e t c plays x plays t+ d child (x.((child(x),plays(x)))) child
Logical synthesis:from a formula to a sentence • the reverse story: • Start : • a semantic formula • + semantic recipes for lexical entries 1, 2, …n • Goal: • A sentence using all these recipes the meaning of which is
Usual solutions:-term unification ? s:kiss(p,m) Peter : np : p kisses : (np\s)/np: x.y.kiss(y,x) Mary : np : m GOAL
np+ s- kiss(,) np+ y.kiss(y, ) ? s:kiss(p,m) Peter : np- : p kisses : (np\s)/np: x.y.kiss(y,x) Mary : np- : m