110 likes | 342 Views
CHAPTER 8 SAMPLING DISTRIBUTIONS. Outline Central limit theorem Sampling distribution of the sample mean. CENTRAL LIMIT THEOREM.
E N D
CHAPTER 8SAMPLING DISTRIBUTIONS Outline • Central limit theorem • Sampling distribution of the sample mean
CENTRAL LIMIT THEOREM Central Limit Theorem: If a random sample is drawn from any population, the sampling distribution of the sample mean is approximately normal for a sufficiently large sample size. The larger the sample size, the more closely the sampling distribution of will resemble a normal distribution.
SAMPLING DISTRIBUTION OF THE SAMPLE MEAN • If the sample size increases, the variation of the sample mean decreases. • Where, = Population mean = Population standard deviation = Sample size = Mean of the sample means = Standard deviation of the sample means
CENTRAL LIMIT THEOREM Example 1: An automatic machine in a manufacturing process requires an important sub-component. The lengths of the sub-component are normally distributed with a mean, =120 cm and standard deviation, =5 cm. What does the central limit theorem say about the sampling distribution of the mean if samples of size 4 are drawn from this population?
CENTRAL LIMIT THEOREM Example 2: An automatic machine in a manufacturing process requires an important sub-component. The lengths of the sub-component are normally distributed with a mean, =120 cm and standard deviation, =5 cm. Find the probability that one randomly selected unit has a length greater than 123 cm.
CENTRAL LIMIT THEOREM Example 3: An automatic machine in a manufacturing process requires an important sub-component. The lengths of the sub-component are normally distributed with a mean, =120 cm and standard deviation, =5 cm. Find the probability that, if four units are randomly selected, their mean length exceeds 123 cm.
CENTRAL LIMIT THEOREM Example 4: An automatic machine in a manufacturing process requires an important sub-component. The lengths of the sub-component are normally distributed with a mean, =120 cm and standard deviation, =5 cm. Find the probability that, if four units are randomly selected, all four have lengths that exceed 123 cm.
READING AND EXERCISES • Reading: pp. 289-298 • Exercises: 8.2, 8.4, 8.6