750 likes | 1.22k Views
Ultrathin films and preparation of films. Ultrathin films Surface anisotropy, Magnetisation, M(T) behavior, Domains Film preparation (a) Vacuum evaporation (b) Magnetron sputtering (c) Laser abrasion (d) Molecular beam epitaxy (e) Self-assembled monolayer
E N D
Ultrathin films and preparation of films • Ultrathin films • Surface anisotropy, Magnetisation, M(T) behavior, • Domains • Film preparation • (a)Vacuum evaporation • (b) Magnetron sputtering • (c) Laser abrasion • (d) Molecular beam epitaxy • (e) Self-assembled monolayer • 3. Measurements E.Bauer, Growth of thin films, J.Phys: Condens. Matter 11(1999)9365
Interesting aspects: (1) For studying new phases of materials such as, fcc cobalt and fcc iron grown on Cu (001) (2) Two dimensional features which not encountered in bulk specimens. (3) Whether any dead layer appears ?
(1)Perpendicular anisotropy N=(P↑-P↓)/ (P↑+P↓) Spin polarization, p (in%), of photoelectrons from Fe(100) on Ag(100), versus magnetic field along the surface normal (Stampanoni et al.,PRL 59(1987)2483).
Temperature dependence of the saturation polarization of a 3.5 ML thick epitaxial bcc Fe film on Ag(001) and a 3 ML fcc Fe on Cu(001). Insert: thickness dependence of the Cuire temperature of the bcc Fe films.
Fcc Fe on (001)Cu Polarization P(H) of a 5 ML fcc Fe film on Cu(001), (a) for sample temperature T=215, 267, and 375 K, (b) at T=30 K, H is perpendicular to the film plan. Polarization P(H) measured at T=30 K, (a) for 3 ML fcc Fe on Cu(001), (b) for 1 ML. H is perpendicular to the film plane.
Temperature dependence of the reduced polarization P/Po for 1, 3, and 5 ML films of fcc Fe on Cu(001). Po is the saturation polarization at low temperature. The Curie temperature are 230K for 1ML film, 390 K for 3 and 5 ML films.
Fcc Co on Cu(001) PRL 58(1987)933 Normalized polarization P/Po as a function of the externally applied field perpendicular to the film plane. Data are given for five film thickness at T=300 K.
Temperature dependence of the spin polarization for a 1 ML film measured in saturation. Applied field 15 KOe
Fe(100) on V(100) PRB 70(2004)214406
Magnetisation loop of 2.2 nm thick Ni(111) on Cu(111), coated by Cu(111), measured by TOM. The films show a perpendicular aniso- tropy (PA) between 1.0 – 2.5 nm (Gradmann, Ann. Phys.17(1966)91).
J Phys: Condens Matt 86(2005)s573
From the above two figures, the following facts are evident: • Films of 1ML or thicker of bcc Fe/Ag(001) is ferromagnetic, Tc ~400K; • For >5ML bcc Fe/Ag(001) Its Tc approaches to bulk; • 3.5ML and 5ML layer thickness Fe(100) on Ag(100) show perpendicular anisotropy. • (2) For fccFe/Cu(001) 1, 3 and 5 ML Tc=220, 360 and 410K, respectively, 3ML Fe/Cu appears P anisotropy at 30K. • (3) Fcc Co/Cu(001) 1ML is F and Tc ~400K, Perpendicular anisotropy appears at room T. • (4) 1-2.5 ML Ni(111)/Cu(111) appears perpendicular anisotropy. • (5) Orbital Moment appears in ultra-thin Co film (<2ML). • In short : > 1ML F appears, Perpendicular anisotropy appears in ultra-thin films, Orbital Moment appears in ultra-thin Co film.
Magnetisation loops of Pd/Co multilayers, taken at 300 K, with the field in the film plane (dashed curves) or along the surface normal (full lines) (Carcia APL 47(1985)178).
Total anisotropy Kt for evaporated (111) texturized polycrystalline Co/Pd multilayers versus thickness t of Co films.
Co/Pt Multilatersa Magnetic hysteresis loops at 20 oC.
Keff d = 2ks + (kV -2πMs2)d Effective anisotropy times Co thickness versus cobalt thickness for [Co/Pt] multilayers (Engle PRL 67(1990)1910).
Surface Magnetic Anisotropy ? • The reduced symmetry at the surface (Neel 1954); • The ratio of Lz2 / (Lx2 + Ly2) is increased near the surface • Interface anisotropy (LS coupling) [1] J.G.Gay and Roy Richter, PRL 56(1986)2728, [2] G.H.O. Daalderop et al., PRB 41(1990)11919, [3] D.S.Wang et al., PRL 70(1993)869.
Surface Magnetisation Ferromagnetism in fcc Fe(111) on CuAu (111). Magnetic moment µFe in the Fe film versus the mean lattice parameter aCuAu or Au concentration cAu in the substrate.
Variation of magnetic moment calculated by layer in an 8 ML Ni/Cu (001) film. The calculated bulk and surface moments are 0.56 µB/Ni and 0.74 µB/Ni (bulk moment 0.6 µB/Ni) (Tersoff PRB 26(1982)6186).
The surface-like layers (layers 7 and 8 from Cu) The interior, bulklike layers (layers 3-6 from Cu) Spin-resoled density of state for 8 ML Ni(001) film on Cu(001)
Ms (T) behaviour 48Ni/52Fe (111) films on Cu(111)
Curie temperature of 48Ni/52Fe(111) versus number of atomic layers DM. The experiments is from Gradmann (Phys. Status Solidi 27(1968)313. Green-function theory from Brodkorb 16(1966)225.)
Domain in ultrathin films Calculated spin distribution in a thinn sample containing A 180O domain wall.
(b) Vibrating sample magnetometry M-H loop of the sample • Domain pattern as measured by • MFM above the surface of an eiptaix • Cu/200nmNi/Cu(100) film.
Thermal evaporation and the uniformity of deposits • The simplest technology, raising the temperature of the source materials; • An open boat, suspended on a wire; • The boat or wire is a high temperature material, such as W or Mo and must not react with the evaporant; • The substrate hold should be rotated in order to get uniform deposits; • The deposition rate is determined by the source area temperature and the distance between the source and substrate as well as the evaporant itself; • Electron beam deposition for high temperature materials or materials which interact with the crucible.
Binary alloy evaporation dZA / dZB = (MB/MA )1/2 exp[-(ΔHA- ΔHB)/RT] (CA/CB) = K (CA/CB). MA, MB are the mass of A and B element; ΔHA and ΔHB the evaporation heat, CA : CB is the atomic ratio.
(the ratio of A:B) (K) The variation of the ratio of evaporated A and B element in binary alloy with time
Sputtering and ion beam assisted deposition Sputtering (Ion beam assisted deposition (IBAD), Ion beam sputter deposition (IBSD)) provides the better quality deposits: • at low substrate temperature, thus avoiding large scale interdiffusion, • adhere well to the substrate, • to realize a reactive sputtering.
The sputtering rate for the different element (using 500 eV Ar+).
Pulsed laser width 10-20 ms, Density 1-5 J/cm2 Schematic picture of Laser ablation
• A continuum NY81-C Nd:YIG laser • The wavelength, pulse frequency and pulse width are 355 nm, 10Hz and 10ns, respectively • The focused laser beam with the energy density of 3-4 J/cm2 • Ceramic target • The distance between the target and substrate is 55 mm • 3x10-5mTorr before introducing pure O2 • O2 gass flow of 60 sccm at a pressure of 75 mTorr • After deposition, the amorphous film is post annealed for 2 minutes at 650oC in air
Summary (1)The chemical composition of the film is the same as that of target (2) The polycrystalline films on ceramic glass substrate have easy magnetization axis normal To the film surface, nanometer size grain and very smooth surface (3) The film shows high squareness of Faraday hysteresis loop (4) Magnetization of the film at temperature range from 240K to 340K is almost temperature independent.
The special points of Pulse Laser Ablation The advantages • The ablated sample with the same composition as the target composition; • High energy particles is beneficial for the film growth and realizing a chemical reaction on substrate; • Reaction deposition; • Multilayers growth and thickness control precisely. The disadvantages • Formingsmall particle, 0.1-10 µ m, • thickness deposited is not uniform
Advantages of MBE • Growth under controlled and monitored conditions with in • situ analysis of film structure and composition (RHEED, • LHEED, XPS, AES). • (2) A key advantage of MBE is that it enables growth of the • layered structure along specific crystalline direction; • (3) Lattice-matching between the seed film (prelayer) and • substrate can be achieved by appropriate choice of materials • and the growth axis of the magnetic structure selected.
Magnetic hysteresis loops for oriented Co-Pt super- lattice recorded by MO effect.
Schematic representation of the three growth modes (a) Island (b) layer-plus-island (c) layer by layer. Substrate The change of AES peak with The deposition deposite ML
Two arrangements for four deposited atoms in the same phase epitaxy 7 AA bonds 8 AA bonds (stable state)