440 likes | 595 Views
David Hopwood Lecture 2 (DH2). Part 1 Aspects of the programming of Type II PKSs Chain length control Tang, Tsai & Khosla (2003) JACS 125: 12708 Keatings-Clay, A. T. et al . (2004) Nature Struct. Biol. 11: 888. Chain length control by Type II ketosynthases. ACP. tcm KS -act CLF. ACP.
E N D
David Hopwood Lecture 2 (DH2)
Part 1 • Aspects of the programming of • Type II PKSs • Chain length control • Tang, Tsai & Khosla (2003) JACS 125: 12708 • Keatings-Clay, A. T. et al. (2004) Nature Struct. Biol. 11: 888
Chain length control by Type II ketosynthases ACP tcm KS-act CLF ACP act KS-tcm CLF no product!
McDaniel, Ebert-Khosla, Hopwood, Khosla (1993) Science 262: 1546 “Engineered Biosynthesis of Novel Polyketides” “The CLF (perhaps in conjunction with the KS) could provide a water-excluding pocket with appropriate molecular dimensions … for the nascent polyketide chain”
Role of the chain length factor CLF KS 18 Å channel lid
Act (C16) DYDMGVVTANACGGFDFTHREFRKLWSEGPKSVSVYESFAWFYAVNTGQI 144 Fren (C16/18) EYGASAVTSNATGGFEFTHREIRKLWTEGPARVSVYESFAWFYAVNTGQI 161 Tcm (C20) EYGLGVLTAAGAGGFEFGQREMQKLWGTGPERVSAYQSFAWFYAVNTGQI 148 Dps (C20) PLEAGVITASASGGFAFGQRELQNLWSKGPAHVSAYMSFAWFYAVNTGQI 166 R1128 (C20) DYSMGVVTSSAIGGFEFTHGEVHKLWTKGPQHVSVYESFAWFYAVNTGQL 152 Gris (C20) ANGMGVVTAAGSGGFEFGERELRKLWSLGANHVSAYQSFAWFPTANTGQI 153 WhiE (C24) PFGIGVVTAAGSGGGEFGQRELQRLWGQGPRFVGPYQSIAWFYAASTGQI 152 Role of the chain length factorin chain length control Critical residues in the channel are smaller for longer carbon chains
(b) Unimodular and bimodular Type II PKSs Tang, Y. et al. (2003) Biochemistry 42: 6588 Tang, Y. et al. (2004) Public Library of Science Biology 2:227 Tang, Y. et al. (2004) Biochemistry 43: 9546
ER ER DH DH KR KR ACP ACP AT AT Unimodular and bimodular PKSs KS KS Initiation module Elongation module
ER ER DH DH KR KR ACP ACP AT AT Unimodular and bimodular PKSs KS KS X Elongation module X Initiation module Initiation module
O O 8 X - O O C S - C o A O H ARO KR CYC CYC O H O O O O O O O O O ACP O O O O O O O O O O O O O O O O H O O S - E S - E H O S - E S - E O H O H O O H O O C O O H AT O O O H O H O Actinorhodin biosynthesis by a unimodular polyketide synthase KS DMAC Actinorhodin
R1128 biosynthesis by a bimodular PKS Initiation module 1 1 1 1 1 Elongation module 2 1 2 2 2 2
Recombining initiation and elongation modules R1128 initiation module + octaketide synthase 2 1
ER DH KR Recombining initiation and elongation modules R1128 initiation module + decaketide synthase
Part 2 PKS gene synthesis and morphing of modular Type I PKSs KOSAN Biosciences
Requirements for PKS gene synthesis and morphing • E. coli as expression host • Pfeifer, B. A. et al. (2001) Microbiol. Mol. Biol. Rev. 65: 106 • Rapid gene synthesis, e.g. ~32 kb DEBS cluster • Kodumal, S. J. (2004) PNAS 101: 15573 • Synthetic PKS building blocks • Combinatorial biosynthesis of novel polyketides • Menzella, H. G. et al. (2005) Nat. Biotech. 23: 1171
PK ~1g/L of 6dEB! E. coli as host for polyketide biosynthesis
One letter code for 2-C extensions added by modules in database
AD G JDD 6dEB The ‘code’ for erythromycin
N J D D J G B N Target polyketide:dissect structure to define necessary modules
GEMS software • Input: PKS module sequence • Optimize and randomize codon usage • Automated restriction site assignment • Avoid secondary structures in RNA • Optimized oligo overlap specificity • Output: overlapping oligos 40mers Jayaraj, S. et al. (2005) Nucleic Acids Res. 33: 3011
40mer oligos Assemble, amplify ~500-800 bp Synthon Error rate ~2 per 1,000 bp Synthon stitching ~5,000 bp DNA SynX Syn3 Syn1 Syn2 Completely automated Fast and accurate gene synthesis
Generic module design Generic module design Alignment of 150 modules revealed conserved sequences at borders
Synthetic PKS building blocks Current collection LM = loading module 4 LI = intrapeptide linker 40 LN = N-terminal linker module 40 LC = C-terminal linker 40 TE = thioesterase 3
Bimodular test system 17 donor X 17 acceptor modules = 289 bimodules 47% gave TKL product
Bimodular test system LI: Intrapeptide linker LC: C- terminal Interpeptide linker LN: N- terminal interpeptide linker
TKLs from bimodular tests 6x6=36 polyketides expected from the 289 bimodular PKSs
TKLs from bimodular tests 264 unnatural PKSs tested, 118 active (45%)
Rescuing inactive bimodules Chandran, S. S. et al. (2006) Chemistry & Biology 13:469
LD LD LD KS KS KS AT AT AT KR KR KR ACP ACP ACP KS AT KR ACP TE KS AT KR ACP eryM2 eryM3 20 mg/L KS AT KR ACP TE eryM2 sorM6 gelM3 rifM5 0 mg/L KS AT KR ACP TE eryM2 (KSeryM3)Sor6 (KSeryM3)Gel3 (KSeryM3)Rif5 10 mg/L 5 mg/L 3 mg/L Rescuing inactive bimodules
Rational design and assembly of synthetic trimodular PKSs Menzella, H. G. et al. (2007) Chemistry & Biology 14: 143
TE LM TE LM LM TE Rational assembly of trimodular PKSs If modA - modB makes a product, and modB - modC makes a product, will modA - modB - modC make a product?
Rational assembly of trimodular PKSs 54 A-B-C trimodular PKSs assembled , with A-B and B-C active as bimodules e.g.: pairs sor6-ery5 and ery5-rap3 are active, so sor6-ery5-rap3 is tested
O O O H O H O O O O O O O H O H O O O O Rational assembly of trimodular PKSs Expected tetraketide products from 54 trimodular PKSs assembled
Rational assembly of trimodular PKSs 52 out of 54 trimodular PKSs active (96%)
Searching for the discodermolide PKS genes Schirmer, A. et al. (2005) Appl. Env. Microbiol. 71: 4840
Discodermia dissoluta Discodermolide
A multimodular PKS KS probe pool An abundant, simple PKS