370 likes | 492 Views
AS91587. Simultaneous Equations. In mathematics , a system of linear equations (or linear system ) is a collection of linear equations involving the same set of variables.
E N D
AS91587 Simultaneous Equations
In mathematics, a system of linear equations (or linear system) is a collection of linear equations involving the same set of variables.
A linear equation is an algebraic equation in which each term is either a constant or the product of a constant and (the first power of) a single variable.
is a linear system of three equations in the three variables x, y, z.
Solving equations • There is a unique solution as -7 is the only value of x that makes the LHS = RHS
We don’t always get a solution though • If we try to solve the following: • We find that this is not true and hence there are no solutions.
Solving 2D systems • Understanding the equations: • Example: • This equations has 2 variables and there are an infinite number of solutions i.e.
Every point on this line satisfies the equation so there are an infinite number of solutions.
We can only get a solution for ‘y’ if we know the particular value of ‘x’ i.e. ‘x’ is no longer a variable.
Solving using substitution • Solve
There is only one point that lies on both lines and so this point (1, 5) is a unique solution
Example • Solve:
If the lines have different gradients, they must intersect and give us a unique solution.
Example • Solve:
Example • This is not possible
The lines will never intersect and hence there is no solution
Notice that the LHS is the same but the RHS is different • This means the lines have the same gradient but are separated.
But if the LHS is the same as the RHS, then every point matches and hence there are an infinite number of solutions • This means the lines have the same gradient but are separated.
It could look like this • The second line is a multiple of the first line
Summary • Left hand sides have different gradients so we expect a unique solution
The systems of equations are consistent with a unique solution
Summary • Left hand sides have the same gradients and the right hand sides are different so we expect no solution
Summary • Left hand sides have the same gradients and the right hand sides are in proportion so we expect infinite solutions
One line matches the other line exactly and so they have infinite solutions. The system of equations is consistent with infinite solutions