420 likes | 884 Views
2. DEFINITIONS. Oxidation: Loss of electrons.Reduction: Gain of electrons.Reductant: Species that loses electrons.Oxidant: Species that gains electrons.Valence: the electrical charge an atom would acquire if it formed ions in aqueous solution.. 3. RULES FOR ASSIGNMENT OF VALENCES. 1) The valence
E N D
1. 1 OXIDATION-REDUCTION
2. 2 DEFINITIONS Oxidation: Loss of electrons.
Reduction: Gain of electrons.
Reductant: Species that loses electrons.
Oxidant: Species that gains electrons.
Valence: the electrical charge an atom would acquire if it formed ions in aqueous solution.
3. 3 RULES FOR ASSIGNMENT OF VALENCES 1) The valence of all pure elements is zero.
2) The valence of H is +1, except in hydrides, where it is -1.
3) The valence of O is -2, except in peroxides, where it is -1.
4) The algebraic sum of valences must equal zero for a neutral molecule or the charge on a complex ion.
4. 4 VARIABLE VALENCE ELEMENTS Sulfur: SO42-(+6), SO32-(+4), S(0), FeS2(-1), H2S(-2)
Carbon: CO2(+4), C(0), CH4(-4)
Nitrogen: NO3-(+5), NO2-(+3), NO(+2), N2O(+1), N2(0), NH3(-3)
Iron: Fe2O3(+3), FeO(+2), Fe(0)
Manganese: MnO4-(+7), MnO2(+4), Mn2O3(+3), MnO(+2), Mn(0)
Copper: CuO(+2), Cu2O(+1), Cu(0)
Tin: SnO2(+4), Sn2+(+2), Sn(0)
Uranium: UO22+(+6), UO2(+4), U(0)
Arsenic: H3AsO40(+5), H3AsO30(+3), As(0), AsH3(-1)
Chromium: CrO42-(+6), Cr2O3(+3), Cr(0)
Gold: AuCl4-(+3), Au(CN)2-(+1), Au(0)
5. 5 BALANCING OVERALL REDOX REACTIONS Example - balance the redox reaction below:
Fe + Cl2 ? Fe3+ + Cl-
Step 1: Assign valences,
Fe0 + Cl20 ? Fe3+ + Cl-
Step 2: Determine number of electrons lost or gained by reactants.
Fe0 + Cl20 ? Fe3+ + Cl-
? ?
3e- 2e-
Step 3: Cross multiply.
2Fe + 3Cl20 ? 2Fe3+ + 6Cl-
6. 6 HALF-CELL REACTIONS The overall reaction:
2Fe + 3Cl20 ? 2Fe3+ + 6Cl-
may be written as the sum of two half-cell reactions:
2Fe ? 2Fe3+ + 6e- (oxidation)
3Cl20 + 6e- ? 6Cl- (reduction)
All overall redox reactions can be expressed as the sum of two half-cell reactions, one a reduction and one an oxidation.
7. 7 Another example - balance the redox reaction:
FeS2 + O2 ? Fe(OH)3 + SO42-
Fe+2S20 + O20 ? Fe+3(OH)3 + S+6O42-
? ?
15e- 4e-
4FeS2 + 15O2 ? Fe(OH)3 + SO42-
4FeS2 + 15O2 ? 4Fe(OH)3 + 8SO42-
4FeS2 + 15O2 +14H2O ? 4Fe(OH)3 + 8SO42- + 16H+
This reaction is the main cause of acid generation in drainage from sulfide ore deposits. Note that we get 4 moles of H+ for every mole of pyrite oxidized!
8. 8 Final example:
C2H6 + NO3- ? HCO3- + NH4+
C-32H6 + N+5O3- ? 2HC+4O3- + N-3H4+
? ?
14e- 8e-
8C2H6 + 14NO3- ? 2HCO3- + NH4+
8C2H6 + 14NO3- ? 16HCO3- + 14NH4+
8C2H6 + 14NO3- + 12H+ + 6H2O? 16HCO3- + 14NH4+
9. 9 STRENGTH OF REDUCING AND OXIDIZING AGENTS Zn + Fe2+ ? Zn2+ + Fe
Which way will the reaction go?
?Gr = -16.3 kcal/mole
Zn is a stronger reducing agent than Fe.
Fe + Cu2+ ? Fe2+ + Cu
?Gr = -34.51 kcal/mole
Fe is a stronger reductant than Cu.
10. 10 ELECTROMOTIVE SERIES Weakest oxidant Strongest reductant
Zn ? Zn2+ + 2e-
Fe ? Fe2+ + 2e-
Cu ? Cu2+ + 2e-
Ag ? Ag+ + e-
Strongest oxidant Weakest reductant
11. 11
12. 12 ELECTROMOTIVE FORCE Electromotive force (EMF): The electrical potential generated by the half reactions of an electrochemical cell.
Consider: Zn + Cu2+ ? Zn2+ + Cu
At equilibrium the electrochemical cell has to obey
13. 13
14. 14 STANDARD HYDROGEN ELECTRODE (SHE) In order to assign a ranking of half-cell reactions, we arbitrarily set E = 0.00 V for the reaction:
H2(g) ? 2H+ + 2e-
when pH2 = 1 bar and pH = 0. In other words, Eo = 0.00 V. This is equivalent to the convention: ?Gfo (H+) = ?Gfo (e-) = 0.00 kcal/mole.
We then connect this SHE to any other electrode representing a half-cell reaction and we can obtain Eo for all half-cell reactions. This is called the standard electrode potential.
15. 15
16. 16 THE NERNST EQUATION The value E0 refers to the EMF of a half-cell reaction when all reactants are in the standard state, e.g., for
Zn ? Zn2+ + 2e-
Eo is the EMF when aZn2+ = 1.0. What if this is not the case?
17. 17 In this particular case
IAP = [Zn2+] and n = 2
so:
18. 18 DEFINITION OF Eh We define Eh to be the EMF between a half-cell reaction in any state, and the SHE. For example, Eh for the zinc reaction above is given defined by the overall reaction: Zn + 2H+ ? Zn2+ + H2(g) for which:
19. 19 STABILITY LIMITS OF WATER IN Eh-pH SPACE Upper limit
H2O(l) ? 2H+ + 1/2O2(g) + 2e-
Eh = E0 + 0.0295 log (pO21/2[H+]2)
E0 = ?Gro/(n?) = -56.687/(2·23.06) = 1.23 V
Eh = 1.23 + 0.0148 log pO2 - 0.0592 pH
At the Earth’s surface, pO2 can be no greater than 1 bar so
Eh = 1.23 - 0.0592 pH
20. 20 Lower limit:
1/2H2(g) ? H+ + e-
Eh = 0 + 0.059 log ([H+]/pH21/2)
Again, let pH2 = 1 bar.
Eh = -0.059 pH
21. 21
22. 22
23. 23 Eh-pH DIAGRAM FOR THE SYSTEM Cd-H2O-CO2
24. 24 START WITH H2O-CO2 SYSTEM H2CO30/HCO3- boundary:
H2CO30 ? HCO3- + H+
?Gro = -140.24 - (-149.00) - (0.00) = 8.76 kcal mol-1
log K = -?Gro/(2.3025RT)
= -8760/(2.3025·1.987·298.15) = -6.42
25. 25 HCO3-/CO32- boundary:
HCO3- ? CO32- + H+
?Gro = -126.15 - (-140.24 ) - (0.00) = 14.09 kcal mol-1
log K = -?Gro/(2.3025RT)
= -14090/(2.3025·1.987·298.15) = -10.33
26. 26 H2CO30/C(graphite) boundary:
C + 3H2O ? H2CO30 + 4H+ + 4e-
?Gro = -149.00 - 3(-56.7) = 21.10 kcal mol-1
E0 = ?Gro/(n?) = 21.10/(4·23.06) = 0.229 volts
27. 27 HCO3-/C(graphite) boundary:
C + 3H2O ? HCO3- + 5H+ + 4e-
?Gro = -140.24 - 3(-56.7) = 29.86 kcal mol-1
E0 = ?Gro/(n?) = 29.86/(4·23.06) = 0.324 volts
28. 28 CO32-/C(graphite) boundary:
C + 3H2O ? CO32- + 6H+ + 4e-
?Gro = -126.15 - 3(-56.7) = 43.95 kcal mol-1
E0 = ?Gro/(n?) = 43.95/(4·23.06) = 0.476 volts
29. 29 CH4(aq)/C(graphite) boundary:
CH4(aq) ? C + 4H+ + 4e-
?Gro = -(-8.28) = 8.28 kcal mol-1
E0 = ?Gro/(n?) = 8.28/(4·23.06) = 0.0898 volts
30. 30 CH4(aq)/HCO3- boundary:
CH4(aq) + 3H2O(l) ? HCO3- + 9H+ + 8e-
?Gro = -140.24 - (-8.28) - 3(-56.7) = 38.14 kcal mol-1
E0 = ?Gro/(n?) = 38.14/(8·23.06) = 0.207 volts
31. 31 CH4(aq)/CO32- boundary:
CH4(aq) + 3H2O(l) ? CO32- + 10H+ + 8e-
?Gro = -126.15 - (-8.28) - 3(-56.7) = 52.23 kcal mol-1
E0 = ?Gro/(n?) = 52.23/(8·23.06) = 0.283 volts
32. 32
33. 33 NOW ADD Cd Cd2+/CdCO3(s) boundary (H2CO30 field):
CdCO3(s) + 2H+ ? Cd2+ + H2CO30
?Gro = -149.00 - 18.55 - (-160.00) = -7.55 kcal mol-1
log K = -?Gro/(2.3025RT)
= 7550/(2.3025·1.987·298.15) = 5.53
34. 34 Cd2+/CdCO3(s) boundary (graphite field):
Cd2+ + C + 3H2O(l) ? CdCO3(s) + 6H+ + 4e-
?Gro = -160.0 - (-18.55) - 3(-56.7) = 28.65 kcal mol-1
E0 = ?Gro/(n?) = 28.65/(4·23.06) = 0.311 volts
35. 35 Cd2+/CdCO3(s) boundary (CH4 field):
Cd2+ + CH4(aq) + 3H2O(l) ? CdCO3(s) + 10H+ + 8e-
?Gro = -160.0 - (-18.55) - 3(-56.7) - (-8.28)
= 36.93 kcal mol-1
E0 = ?Gro/(n?) = 36.93/(8·23.06) = 0.200 volts
36. 36 Cd(OH)2(s)/CdCO3(s) boundary (CO32- field):
Cd(OH)2(s) + CO32- + 2H+ ? CdCO3(s) + 2H2O(l)
?Gro = -160.0 + 2(-56.7) - (-113.19) - (-126.15)
= -34.06 kcal mol-1
log K = -?Gro/(2.3025RT)
= 34060/(2.3025·1.987·298.15) = 24.97
37. 37 Cd(OH)2(s)/CdCO3(s) boundary (CH4 field):
Cd(OH)2(s) + CH4(aq) + H2O(l) ? CdCO3(s) + 8H+ + 8e-
?Gro = -160.0 - (-56.7) - (-113.19) - (-8.28)
= 18.17 kcal mol-1
E0 = ?Gro/(n?) = 18.17/(8·23.06) = 0.098 volts
38. 38 Cd(OH)2(s)/Cd2+ boundary:
Cd(OH)2(s) + 2H+ ? Cd2+ + 2H2O(l)
?Gro = -18.55 + 2(-56.7) - (-113.19)
= -18.76 kcal mol-1
log K = -?Gro/(2.3025RT)
= 18760/(2.3025·1.987·298.15) = 13.75
39. 39 Cd(OH)2(s)/CdO22- boundary:
Cd(OH)2(s) ? CdO22- + 2H+
?Gro = -67.97 - (-113.19)
= 45.22 kcal mol-1
log K = -?Gro/(2.3025RT)
= -45220/(2.3025·1.987·298.15) = -33.15
40. 40
41. 41