1 / 18

Atom Chips and Photonic Crystals

Atom Chips and Photonic Crystals. Chiara Fort Francesco Cataliotti Diederik Wiersma Francesco Marin. Ultracold A toms and Optical Lattices Traditional S ystems. Current ~ 100 A Power ~ 1.5 kW. n = 10-100 Hz. +. Ultra High Vacuum ~ 10 -11 Torr. double MOT system:

ermaj
Download Presentation

Atom Chips and Photonic Crystals

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. AtomChips and PhotonicCrystals Chiara Fort Francesco Cataliotti Diederik Wiersma Francesco Marin

  2. Ultracold Atoms and OpticalLattices TraditionalSystems Current ~ 100 A Power ~ 1.5 kW n = 10-100 Hz + Ultra High Vacuum ~ 10-11 Torr double MOT system: Laser power ~ 500 mW Large BEC 106atoms but production cycle> 1 min Well established experimental procedure, possibility of working with large atomic samples, very well proven versatility Low repetition rate, complicated and expensive, single site access problematic

  3. AtomChips and PhotonicCrystals NovelTechnology Micro-chip traps Photonic Crystals + Silicon: 2 cm x 3 cm x 600 mmGoldmicrowires: 2.5 mm X 50 ~ 300 mmCurrents: < 2 A single MOT system: Laser power~ 100 mW Fast and cheap experiments, extreme versatility, possibility of single site addressing, cross fertilization from different active fields “Small” atomic samples, Mixtures yet to be proven, New technologies involved

  4. Outlook • Cooling and trappingAtoms on a Microchip • Photonicmaterials • Photonic BEC? • Conclusions

  5. s+ s+ s+ s- s- s+ s+ s- s+ s- s- s- Loadingatoms on a microchip • Ridurre la distanza tra la MOT e il MicroChip.

  6. Loadingatoms on a microchip

  7. Trappingatoms on a Chip • Planar Geometry  gold microstrips on silicon substrates Bwir (Iwir= 3A) Bbias= {0,3.3,1.2} Gauss |B| (Gauss) z (mm) Iwir= 3 A ; Bbias= {0,3.3,1.2} Gauss Iwir= 1 A ; Bbias= {0,3.3,1.2} Gauss |B| (Gauss) x (mm)

  8. Trappingatoms on a Chip Quadrupole trap (B=0 at minimum) - Good for magneto-optical traps Ioffe-Pritchard trap (B>0 at minimum) - Good for magnetic trapping. ΔE m=1 m=0 Magneticallytrapped state |B| m=-1

  9. Trappingatoms on a Chip

  10. Trappingatoms on a Chip Varying the current on the chip itispossibletomanipulate the atoms Chip realized in AtomInstitut in Vienna. Assembled at INFN by E. Scarlini, I. Herrera and L. Consolino

  11. Trappingatoms on a Chip

  12. PhotonicMaterials Photonic crystals are periodic optical (nano)structures that are designed to affect the motion of photons in a similar way that periodicity of a semiconductor crystal affects the motion of electrons. Photonic crystals occur in nature and in various forms have been studied by science for the last 100 years.

  13. PhotonicMaterials Integratedwaveguides Using nanostructured materials it is possible to create photonic structures to realize either planar or linear waveguides. By getting the atoms at micrometric distances from the structured surface we will be able to make them interact with the evanescent wave field leaking out of similar waveguides. We will be able to efficiently address the atoms with different optical wavelengths creating both repulsive and attractive potentials. the ability to use different light colours in the waveguides will also enable us to create a various potential geometries going from purely periodic to quasi periodic with the possibility of generating very well controllable time dependent potentials.

  14. Conclusions • The atomswillbebrought in the evanescentfieldof micro and nanostructures • Reproduciblepotentialsforatomswillberealized • Modificationofopticalpropertiesofstructureswillbepossible • Verysmallatom-surfacedistances • Smallindexofrefractionofatomicsamples

  15. Photonic BEC When atoms are trapped in the periodic structure formed by an optical lattice, the stystem behaves as a Bragg mirror in its ground state • Mirror mass M ≈ 10-20 Kg • Mirror TemperatureT = 0 K Reflectivity Bandwidth PhysicalReviewLetters104, 050403 (2010)

  16. Coherentoptical information storage in coldatoms (with P. Lombardi, F. Marin and E. Giacobino) C. Liu, Z. Dutton, C. H. Behroozi, L. Hau Nature 409, 490 (2001)

  17. Utilizzo personale e strutture • Studenti: • Pietro Lombardi (Dott.) • Francesco Cappelli (LS) • Personale strutturato: • Chiara Fort • Francesco Cataliotti (DE) • Francesco Marin • Massimo Inguscio • Personale non strutturato: • Ivan Herrera (LENS) • Jovana Petrovic (LENS) • Impatto Dipartimento: • Assistenza microsaldatura e micromanipolazione per assemblaggio (1 – 2 settimane x anno)(Enrico Scarlini)

  18. Pubblicazioni (dal 2007) • “Magneticmicrotrapsfor quantum control”I. Herrera, G. D’Arrigo, M. Siciliani de Cumis, F. S. CataliottiInternational Journal of Quantum Information 5, 23-31 (2007) • “Modeling the dynamics of a weakly coupled chain of quantum systems”F. S. Cataliotti, L. Fallani, F. Ferlaino, C. Fort, P. Maddaloni, M. Inguscio.New Journal of Physics 10th Anniversary Highlights 14 (2008) • “Interferometric quantum sensors”M. Siciliani de Cumis, F. Marino, M. Anderlini, F. S. Cataliotti, F.Marin, E. Rimini, G. D’ArrigoAdvances in Science and Technology55 154-159, (2008) • “Macroscopic Quantum Entanglement in Light ReflectionfromBose-EinsteinCondensates” F. De Martini, F. Sciarrino, N. Spagnolo, C. Vitelli, F. S. CataliottiInternational Journal of Quantum Information 7, 171-177 (2008) • “Radiation pressure excitation and cooling of a cryogenic micro-mechanical systems cavity”M. Siciliani de Cumis, A. Farsi, F. Marino, G. D'Arrigo, F. Marin, F.S. Cataliotti, E. RiminiJournal of Applied Physics 106(1), 013108, (2009). • “Hidden order in bosonic gases confined in one dimensional optical lattices”L. Amico, G. Mazzarella, S. Pasini and F.S. CataliottiNew Journal of Physics . 12, 013002 (2010). • “Coherent scattering of a Multiphoton Quantum Superposition by a Mirror-BEC”F. De Martini; F. Sciarrino; C. Vitelli and F.S. CataliottiPhyical Review Letters, 104, 050403 (2010). • “Classical signature of ponderomotive squeezing in a suspended mirror resonator” • F. Marino, F. S. Cataliotti, A. Farsi, M.Siciliani de Cumis and F. Marin • Phyical Review Letters, 104, 073601 (2010).

More Related