180 likes | 193 Views
Atom Chips and Photonic Crystals. Chiara Fort Francesco Cataliotti Diederik Wiersma Francesco Marin. Ultracold A toms and Optical Lattices Traditional S ystems. Current ~ 100 A Power ~ 1.5 kW. n = 10-100 Hz. +. Ultra High Vacuum ~ 10 -11 Torr. double MOT system:
E N D
AtomChips and PhotonicCrystals Chiara Fort Francesco Cataliotti Diederik Wiersma Francesco Marin
Ultracold Atoms and OpticalLattices TraditionalSystems Current ~ 100 A Power ~ 1.5 kW n = 10-100 Hz + Ultra High Vacuum ~ 10-11 Torr double MOT system: Laser power ~ 500 mW Large BEC 106atoms but production cycle> 1 min Well established experimental procedure, possibility of working with large atomic samples, very well proven versatility Low repetition rate, complicated and expensive, single site access problematic
AtomChips and PhotonicCrystals NovelTechnology Micro-chip traps Photonic Crystals + Silicon: 2 cm x 3 cm x 600 mmGoldmicrowires: 2.5 mm X 50 ~ 300 mmCurrents: < 2 A single MOT system: Laser power~ 100 mW Fast and cheap experiments, extreme versatility, possibility of single site addressing, cross fertilization from different active fields “Small” atomic samples, Mixtures yet to be proven, New technologies involved
Outlook • Cooling and trappingAtoms on a Microchip • Photonicmaterials • Photonic BEC? • Conclusions
s+ s+ s+ s- s- s+ s+ s- s+ s- s- s- Loadingatoms on a microchip • Ridurre la distanza tra la MOT e il MicroChip.
Trappingatoms on a Chip • Planar Geometry gold microstrips on silicon substrates Bwir (Iwir= 3A) Bbias= {0,3.3,1.2} Gauss |B| (Gauss) z (mm) Iwir= 3 A ; Bbias= {0,3.3,1.2} Gauss Iwir= 1 A ; Bbias= {0,3.3,1.2} Gauss |B| (Gauss) x (mm)
Trappingatoms on a Chip Quadrupole trap (B=0 at minimum) - Good for magneto-optical traps Ioffe-Pritchard trap (B>0 at minimum) - Good for magnetic trapping. ΔE m=1 m=0 Magneticallytrapped state |B| m=-1
Trappingatoms on a Chip Varying the current on the chip itispossibletomanipulate the atoms Chip realized in AtomInstitut in Vienna. Assembled at INFN by E. Scarlini, I. Herrera and L. Consolino
PhotonicMaterials Photonic crystals are periodic optical (nano)structures that are designed to affect the motion of photons in a similar way that periodicity of a semiconductor crystal affects the motion of electrons. Photonic crystals occur in nature and in various forms have been studied by science for the last 100 years.
PhotonicMaterials Integratedwaveguides Using nanostructured materials it is possible to create photonic structures to realize either planar or linear waveguides. By getting the atoms at micrometric distances from the structured surface we will be able to make them interact with the evanescent wave field leaking out of similar waveguides. We will be able to efficiently address the atoms with different optical wavelengths creating both repulsive and attractive potentials. the ability to use different light colours in the waveguides will also enable us to create a various potential geometries going from purely periodic to quasi periodic with the possibility of generating very well controllable time dependent potentials.
Conclusions • The atomswillbebrought in the evanescentfieldof micro and nanostructures • Reproduciblepotentialsforatomswillberealized • Modificationofopticalpropertiesofstructureswillbepossible • Verysmallatom-surfacedistances • Smallindexofrefractionofatomicsamples
Photonic BEC When atoms are trapped in the periodic structure formed by an optical lattice, the stystem behaves as a Bragg mirror in its ground state • Mirror mass M ≈ 10-20 Kg • Mirror TemperatureT = 0 K Reflectivity Bandwidth PhysicalReviewLetters104, 050403 (2010)
Coherentoptical information storage in coldatoms (with P. Lombardi, F. Marin and E. Giacobino) C. Liu, Z. Dutton, C. H. Behroozi, L. Hau Nature 409, 490 (2001)
Utilizzo personale e strutture • Studenti: • Pietro Lombardi (Dott.) • Francesco Cappelli (LS) • Personale strutturato: • Chiara Fort • Francesco Cataliotti (DE) • Francesco Marin • Massimo Inguscio • Personale non strutturato: • Ivan Herrera (LENS) • Jovana Petrovic (LENS) • Impatto Dipartimento: • Assistenza microsaldatura e micromanipolazione per assemblaggio (1 – 2 settimane x anno)(Enrico Scarlini)
Pubblicazioni (dal 2007) • “Magneticmicrotrapsfor quantum control”I. Herrera, G. D’Arrigo, M. Siciliani de Cumis, F. S. CataliottiInternational Journal of Quantum Information 5, 23-31 (2007) • “Modeling the dynamics of a weakly coupled chain of quantum systems”F. S. Cataliotti, L. Fallani, F. Ferlaino, C. Fort, P. Maddaloni, M. Inguscio.New Journal of Physics 10th Anniversary Highlights 14 (2008) • “Interferometric quantum sensors”M. Siciliani de Cumis, F. Marino, M. Anderlini, F. S. Cataliotti, F.Marin, E. Rimini, G. D’ArrigoAdvances in Science and Technology55 154-159, (2008) • “Macroscopic Quantum Entanglement in Light ReflectionfromBose-EinsteinCondensates” F. De Martini, F. Sciarrino, N. Spagnolo, C. Vitelli, F. S. CataliottiInternational Journal of Quantum Information 7, 171-177 (2008) • “Radiation pressure excitation and cooling of a cryogenic micro-mechanical systems cavity”M. Siciliani de Cumis, A. Farsi, F. Marino, G. D'Arrigo, F. Marin, F.S. Cataliotti, E. RiminiJournal of Applied Physics 106(1), 013108, (2009). • “Hidden order in bosonic gases confined in one dimensional optical lattices”L. Amico, G. Mazzarella, S. Pasini and F.S. CataliottiNew Journal of Physics . 12, 013002 (2010). • “Coherent scattering of a Multiphoton Quantum Superposition by a Mirror-BEC”F. De Martini; F. Sciarrino; C. Vitelli and F.S. CataliottiPhyical Review Letters, 104, 050403 (2010). • “Classical signature of ponderomotive squeezing in a suspended mirror resonator” • F. Marino, F. S. Cataliotti, A. Farsi, M.Siciliani de Cumis and F. Marin • Phyical Review Letters, 104, 073601 (2010).