240 likes | 381 Views
Quantitative Methods. Models, parameters and GLMs. Models, parameters and GLMs. Models. Y = + . Unknown quantities we would like to know, in Greek Known quantities that are estimates of them, in Latin. Models, parameters and GLMs. General Linear Model. Models, parameters and GLMs.
E N D
Quantitative Methods Models, parameters and GLMs
Models, parameters and GLMs Models Y = + Unknown quantities we would like to know, in Greek Known quantities that are estimates of them, in Latin
Models, parameters and GLMs General Linear Model
Models, parameters and GLMs Aliassing
Models, parameters and GLMs Aliassing
Models, parameters and GLMs Aliassing
Models, parameters and GLMs Aliassing
√ Models, parameters and GLMs GLMs in Minitab
God’s view: , 1, 2 are known, and y, a1, a2 are unpredictable Our view: y, a1, a2 are known, and we need to guess , 1, 2 Models, parameters and GLMs Logic of statistical inference
Models, parameters and GLMs Logic of statistical inference inferred 1 observed a1 possible a1 true 1
Models, parameters and GLMs Logic of statistical inference inferred 1 observed a1 possible a1 true 1
Models, parameters and GLMs Logic of statistical inference inferred 1 observed a1 possible a1 true 1
Models, parameters and GLMs Logic of statistical inference inferred 1 observed a1 possible a1 true 1
Models, parameters and GLMs Logic of statistical inference inferred 1 observed a1 possible a1 true 1
Models, parameters and GLMs Simulations in Minitab
Models, parameters and GLMs Simulations in Minitab
Models, parameters and GLMs Simulations in Minitab
Models, parameters and GLMs Simulations in Minitab
√ Models, parameters and GLMs Simulations in Minitab
Models, parameters and GLMs Simulations in Minitab
Models, parameters and GLMs Simulations in Minitab
Models, parameters and GLMs Last words… • GLMs unite ANOVA (categorical X) and regression (continuous X), and use model formulae • ‘Parameter’ and ‘estimate’ are central ideas • Enjoy playing God for once, and knowing all the answers Next week: Using more than one explanatory variable Read Chapter 4