1 / 50

Examples of Science

Dive into the complex world of cosmic rays, from gamma-ray bursts to high energy astrophysics and particle accelerators, uncovering the mysteries of our universe.

esaxton
Download Presentation

Examples of Science

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Examples of Science Generic fluxes associated with cosmic rays Astrophysics: gamma ray bursts Particle physics: cold dark matter search

  2. Nature’s Particle Accelerators • Electromagnetic Processes: • Synchrotron Emission • Eg a (Ee/mec2)3 B • Inverse Compton Scattering • Ef ~ (Ee/mec2)2 Ei • Bremmstrahlung • Eg ~ 0.5 Ee • Hadronic Cascades • p + g ->p± +po +… -> e ± + n + g +… • p + p -> p± +po +… -> e ± + n + g +…

  3. High Energy Gamma-Ray Astrophysics Typical Multiwavelength Spectrum from High Energy g-ray source [ Energy Emitted] [ Photon Energy]

  4. Spinning Neutron Star Fills Nebula with Energetic Electrons • => Synchrotron Radiation and Inverse Compton Scattering

  5. Active Galactic Nuclei • Massive Black Hole Accelerates Jet of Particles to Relativistic Velocities => Synchrotron Emission and Inverse Compton and/or Proton Cascades

  6. Challenge I: Acceleration shock velocity n R (V = e F; b = v/c) B n • = boosted energy from cosmic accelerator

  7. Energy in extra-galactic cosmic rays ~3x1037 erg/s or 1044 erg/yr per (Mpc)3 3x1039 erg/s per galaxy 3x1044 erg/s per active galaxy 2x1052 erg per gamma ray burst 1 TeV = 1.6 erg

  8. brightest known sources match IF equal energy in protons and electrons (photons) • AGN (steady): G~ few requires L>1047 erg/s Few, brightest AGN • GRBs (transient): G~ 300 requires L>1051 erg/s Average Lg~1052 erg/s equal energy in neutrinos?

  9. some definitions • flux F = dN/dE (particles cm-2 s-1) • fluency f = E dN/dE (erg cm-2 s-1) • luminosity L = f x 4pd2 (erg s-1)

  10. PointSources Signal: Background (atmos. n’s): For 10 -- 1000 TeV:

  11. Cosmological sources: Most Powerful Cosmological sources: AGN (Steady) GRBs (~100s transient) • ~1 km2 detector • Same UHE CR “suspects”

  12. Challenge II: Propagation (GZK) • >1020eV proton: lE<100 Mpc • Bright AGN (Radio galaxies)- too far  • GRBs  Does the spectrum support GZK?

  13. [EW 95] Model • Fly’s Eye fit for Galactic heavy (<1019eV): JG~E-3.50 • X-Galactic protons: Generation spectrum (shock acceleration): Generation rate: Redshift evolution ~ SFR

  14. [Bahcall & EW 03] Model vs. Data X-G Model: Ruled out 7s 5s

  15. Conclusions are Robust

  16. CR Conclusions • Yakutsk, Fly’s Eye, HiRes: Consistent with XG protons: + GZK Robust; Consistent with GRB model predictions • AGASA (25% of total exposure): Consistent below 1020eV Excess above 1020eV: 2.2+/-0.8 8 observed New source/ New physics/ 25% energy Local inhomogeneity over-estimate • Stay tuned for Auger (Hybrid) ??

  17. diffuse flux flux = velocity x density flux = c/4p x density, for isotropic flux --> in energy density E dN/dE dE= c/4p x rE E dN/dE = A E -g cm-2 s-1 sr-1 (g = -1)

  18. diffuse background Signal: Background (atmos. n’s): Waxman-Bahcall bound ~ 1km2 detector --> 50 events/yr

  19. n Flux Bound • Observed JCR(>1019eV) • For Sources with tgp < 1: • Strongest know z evolution (QSO, SFR): collect n’s beyond GZK [EW & Bahcall 99, Bahcall & EW 01]

  20. tgp for known sources e’g p+ e+ eg n e- ep

  21. Antares Nemo

  22. Neutrinos from GRB: an example

  23. Gamma-ray Bursts M on ~1 Solar Mass BH Relativistic Outflow G~300 e- acceleration in Collisionless shocks e-Synchrotron MeV g’s Lg~1052erg/s [Meszaros, ARA&A 02]

  24. Gamma Ray Burst • Photons and protons • coexist in internal • shocks • External shocks

  25. Correlations to BATSE Gamma Ray Bursts ? 1969 BATSE: 1991- May 2000 1997

  26. NUMEROLOGY • Lg = 1052 erg/s • R0 = 100 km • Eg = 1 MeV • t = 1-10 msec • = 300 • tH = 1010 years • dE/dt = 4x1044 erg Mpc-3yr-1 • Pdetected = 10-6 En0.8 (in TeV) • spg = 10-28cm2 for p+gn+p • < xp p > = 0.2

  27. GRB1 FRAMES Fireball Frame Observer Frame DR R' R v c g ~ 102 - 103 E = g E' ~ 1 MeV R = g R' d DR = cDt = R0 with R0 = R' (t = 0) observed 1 msec

  28. R0 100 km • cos  = v/c ~ - grb kinematics R v2 __ c2 q g = [1- ]-1/2 v ~ - 102 - 103 q c DR __ c 1 _ c Dt = = (R - Rcosq) v __ c R __ 2c R __ c v2 __ c2 R __ 2c 1 __ g2 ~ - ( 1 - ) (1- ) ~ - = • Dtobs • DEobsg E ~ -

  29. GRB3 Pion (neutrino) production when protons and photons coexist neutrinos pg np+ gamma rays np0 Ep > 1.4 x 104 TeV m2D - m2p _________ 4E'g E'p > ~ _ ~ _ En = 1/4 < xp p> Ep 1/20 Ep 0.7 PeV

  30. GRB4 Fraction of GRB energy converted into pion (neutrino) production DR' ___ lpg ~ _ f p = <x p p> 15% l-1pg = ng spg e g (Lg) synchro/ICompton fireball p n pions (LCR)

  31. GRB2 Photon Density in the Fireball LgDt/g ______ 4pR'2DR' U'g ___ E'g ng = = E'g ___ g R' = g2cDt DR' = gcDt note: for g = 1 (no fireball) optical depth of photons is topt = = R0ngsTh ~ 1015 R0 __ lTh

  32. GRB 5 Neutrino flux from GRB fireballs U ___ E 1 ___ E fn = = (1/2 f tH) c __ 4p c __ 4p dE __ dt ~ _ charged p only LCR Lg Nevents = Psurvived Pdetected fn 20 km -2 yr -1 ~ _

  33. GRB 6 NUMEROLOGY <xp -> p> = 1/5 spg = 10-28cm2 tH = 1010 years dE/dt = 4x1044 erg Mpc-3yr-1 Pdetected = 10-6 En0.8 (in TeV) Lg = 1052 erg/s R0 = 100 km Eg = 1 MeV t = 1-10 msec g = 300

  34. Search for HE n from GRB

  35. Correlations to GRB Background cuts can be loosened considerably  high signal efficiency 88 BATSE bursts in 1997 Combined data give sensitivity ~ prediction!

  36. Marriage of Astronomy and Physics • Astronomy: new window on the Universe! “You can see a lot by looking” • Physics: search for dark matter search for topological defects and cosmological remnants search for monopoles measure the high-energy neutrino cross section (TeV-scale gravity?) cosmic ray physics: 150 atmospheric nus/day array with EeV sensitivity test special and general relativity with new precision

  37. Relic density – simple approach Decoupling occurs when G < H We have

  38. The Lightest Supersymmetric Particle (LSP) Usually the neutralino. If R-parity is conserved, it is stable. The Neutralino – c Gaugino fraction 1. Select MSSM parameters 2. Calculate masses, etc 3. Check accelerator constraints 4. Calculate relic density 5. 0.05 < Wch2 < 0.5 ? 6. Calculate fluxes, rates,... Calculation done with The MSSM – general http://www.physto.se/~edsjo/darksusy/

  39. Wh2 > 1 LEP Wh2 < 0.025 Low sampling The mc-Zg parameter space Gauginos Mixed Higgsinos

  40. WIMP search strategies • Direct detection • Indirect detection:– neutrinos from the Earth/Sun– antiprotons from the galactic halo– positrons from the galactic halo– gamma rays from the galactic halo– gamma rays from external galaxies/halos– synchrotron radiation from the galactic center / galaxy clusters– ...

  41. WIMP + nucleus WIMP + nucleus • Measure the nuclear recoil energy • Suppress backgrounds enough to be sensitive to a signal, or... • Search for an annual modulation due to the Earth’s motion around the Sun Direct detection - general principles

  42. Most likely DAMA point. Excluded at 99.8% CL EdelweissJune 2002

  43. Direct detection – current limits Spin-independent scattering Spin-dependent scattering Direct detection experiments have started exploring the MSSM parameter space!

  44. rc velocity distribution c n interactions Earth sscatt n int. m int. nm Gcapture Gannihilation m Detector Neutralino capture and annihilation Sun interactions hadronization Silk, Olive and Srednicki, ’85Gaisser, Steigman & Tilav, ’86 Freese, ’86; Krauss, Srednicki & Wilczek, ’86Gaisser, Steigman & Tilav, ’86

  45. Indirect detection for cyclists e.g. 104 m2n-telescope searches for 500 GeV WIMP > LHC limit 300 km/s 1.  - flux 500 GeV ________ mz  =rcv = 2.4 x 104 [ ]cm-2s-1 500 GeV ________ mz 0.4 GeV cm-3 = 8 x 10-4 [ ] cm-3 2. Solar cross section M8 __ mN S =ns =s (N)= [1.2x10]57 10-41cm2 GF2 ___ mZ2 MZ2 ___ mH4 (GF mN2)2 ~

  46. N = capture rate = annihilation rate _ c c WW 250 GeV 500 GeV mnm N8 = S= 3 x 1020 s-1 3. Capture rate by the sun 4. Number of muon-neutrinos Nnm = 2 x 0.1 N Leptonic BR~0.1

  47. Nnm ____ 4pd2 5. nm = = 2 x 10-8 cm-2 s-1 1 A.U. 5.5 x 1023 cm-3 6. # events = area x nm x ice x sn m x Rm 104 m2 En ___ GeV • sn m = 10-38 cm2 = 2.5 x 10-36 cm2 ~ _ E ___ GeV • Rm = 5m = 625m (Em 0.5 En) # events = 10 per year

  48. WIMPs in Center of Earth Baikal AMANDA limit – 10 strings only

  49. Limits: m flux from the Earth/Sun Earth Sun

  50. Flux from Earth/Sun and future GENIUS/CRESST limits Earth Sun

More Related