570 likes | 714 Views
GUARANTED SET COMPUTATION Ellipsoidal approach. S. Lesecq GIPSA-Lab, Département Automatique INPG-UJF-CNRS Suzanne.lesecq@gipsa-lab.inpg.fr. Motivation Notations and definitions Outer bounding ellipsoid Algorithm(s) Parameterised family Simple example Factorisation.
E N D
GUARANTED SET COMPUTATIONEllipsoidal approach S. Lesecq GIPSA-Lab, Département Automatique INPG-UJF-CNRS Suzanne.lesecq@gipsa-lab.inpg.fr
Motivation Notations and definitions Outer bounding ellipsoid Algorithm(s) Parameterised family Simple example Factorisation Convergence conditions Common difficulties Choice of the “bound” Industrial context: input? Extra Inner bounding Uncertainty in the model References Outline
Motivation - 1 • Discrete-time dynamic system • Observation ykmeasured output vector uk known input vector unknown: state, process perturbation, measurement noise • Identification (output linear in the parameters)
Define two parallel hyperplanes S3 S1 2 2 Feasible set Compute a simpler set enclosing S S2 S dk 1 1 Motivation - 2 • Consider a SISO model dk : regressor, : parameter vector Error bound ek
2 S S 1 Motivation - 3 • Possible simpler sets • Polytopes • Parallelotopes • Orthotopes • Ellipsoids… • Outer bounding ellipsoid Mininum size • Inner bounding ellipsoid Maximum size 2 Criterion to be optimised 1
det trace det trace Motivation - 4 • Usual criteria • “Determinant criterion” (actually log(det)…) • “Trace criterion”
Notations & definitions - 1 • Norm : Euclidian • Unit ball centred on the origin: • Bounded ellipsoid E(c,P) with non empty interior c: centre P = PT > 0 : shape and orientation
2 1 Notations & definitions - 2 • Particular cases • Strip = unbounded ellipsoid • Empty interior ellipsoid Centre c not unique, just satisfy: y = Cc 2 1
Notations & definitions - 3 • Sum of K ellipsoids (prediction) • Intersection of K ellipsoids (correction)
Motivation Notations and definitions Outer bounding ellipsoid Algorithm(s) Parameterised family Simple example Factorisation Examples : Identification Convergence conditions Common difficulties Choice of the “bound” Industrial context: input? Extra Inner bounding Uncertainty in the model References Outline
2 Sk Ek-1 1 Ek Weighted sum of Ek-1 and Sk Outer bounding ellipsoid - 1 • Recursive algorithm (Fogel and Huang, 1982) not normalised form (intersection): P = PT > 0
Outer bounding ellipsoid - 2 • OBE algorithm Choice ofk, k ?
No update Outer bounding ellipsoid - 3 • “Basic OBE algorithm not optimal” (Belforte and Bona, 1985 and 1990) • Void intersection must be detected add intersection test (e.g. Pronzato and Walter, 1994) • Other classical situation
l2 l1 Outer bounding ellipsoid - 4 • Usual criteria • In the litterature, two sets of programs (Favier and Arruda, 1996; Tran Dinh, 2005) • Set 1: minimize the geometrical size of Ek • Set 2 : insure the convergence of 2
Fogel and Huang, 1982, (FH) Parametrised family (Durieu, et al., 1996) 2 families Set Membership Set Approximation SMSA (Nayeri, et al., 1994) Same criterion (tr or det) same ellipsoids Outer bounding ellipsoid - 5 • Set 1 (size)
Dasgupta and Huang, 1987 (DH) If then Criterion: If then Lozano-Leal and Ortega, 1987 (LO) Criterion: If then Tan, et al., 1997 (TAN) Criterion : Outer bounding ellipsoid - 6 • Set 2
Outer bounding – 7 (parameterised family) • Normalised problem (Durieu, et al., 2001) • MIMO models • State estimation (identification) Sum, Intersection • Analytical results K ellipsoids • Optimisation problem addressed in details Empty interior Unbounded (strip)
Outer bounding – 8 (parameterised family) • Sum of K ellipsoids (Durieu, et al., 2001) Problem: find • Theorem 4.1 The centre of the optimal ellipsoid E* for both problems is given by: Empty interior possible
Outer bounding – 9 (parameterised family) Parameterized family optimisation can be done • Theorem 4.2 • c*: independent of • Solve for the problem: generally, suboptimal solution of:
Outer bounding – 10 (parameterised family) • Necessary condition (Lemma 4.1) for E* to be optimal solution of • Theorem 4.4: Trace criterion explicit solution • Theorem 4.5: recursive nonrecursive approximating ellipsoid • Determinant criterion no explicit solution
Unbounded ellipsoid possible Outer bounding – 11 (parameterised family) • Intersection of K ellipsoids (Durieu, et al., 2001) Problem: find
Outer bounding – 12 (parameterised family) • Theorem 5.1 • Proposition 5.1
x2 H1 H2 S H3 x1 Outer bounding ellipsoid - 13 • Ellipsoid with parallel cuts algorithm (Goldfarb and Todd, 1982) • Sequential algorithm • Equivalent to (modified) OBE (Pronzato and Walter, 1994) • “Recursively optimal” i.e. minimal volume ellipsoid containing E(ck-1,Pk-1) Bk x2 Hk Ek Ek-1 x1
uk yk Outer bounding ellipsoid - (example) • Simulated data ykmeasured output vector unknown: measurement noise (uniform distribution) SNR 50 dB • Identification
2 c 1 = * = 0.003 Outer bounding ellipsoid - (example) • Results: xtheoretic = [0.95, 0.05] c0 = 0, 02P = 106I Set 1 determinant Set 2
Evolution of Det (k2P) LO = Lozano-Leal and Ortega, 1987 TAN = Tan, et al., 1997 DH = Dasgupta and Huang, 1987 FH = Fogel and Huang, 1982 Evolution of k2 1 4 2 3 3 2 4 k 1 k Outer bounding ellipsoid - (example)
Outer bounding ellipsoid - (example) • Parameter a evolution Figure 2.4 : Evolution des paramètres estimés.
Outer bounding ellipsoid - (example) • Parameter b evolution
Outer bounding ellipsoid : summary • Two sets of algorithms (Favier and Arruda, 1996; Tran Dinh, 2005): • Minimise the geometrical size of E • Minimise 2 • Different formulations of the algorithm • Equivalence provable for some of them (OBE-EPC…) (Pronzato and Walter, 1994, Tran Dinh, 2005) • (Durieu, et al., 1996 and 2001): • Parameterised family • K ellipsoids • Convexity of criteria
Motivation Notations and definitions Outer bounding ellipsoid Algorithm(s) Parameterised family Simple example Factorisation Examples : Identification Convergence conditions Common difficulties Choice of the “bound” Industrial context: input? Extra Inner bounding Uncertainty in the model References Outline
M L LT = U 0 A H = Factorisation - 1 • Prerequisite • Orthogonal matrix: HT = H-1 • Numerically highly suitable • Orthogonal factorisation • Factorisation of a product of matrices
Factorisation - 2 • Factorisation of a sum of matrices • Least Square problem solution • Recursive Least Square problem: also factorised…
Factorisation - 3 • Parameterised family (Durieu, et al., 1996) hypothesis (not restrictive): y R Sum of 2 symmetric matrices factorise! Intersection • Goldfarb and Todd, 1982 • LDL factorisation • Cholesky suggested
LS: = XT M X Factorisation - 4 • Reformulation optimisation problem (Lesecq and Barraud, 2002) Let then
= s2 > 0 ck, Mk: independent Factorisation - 5 • Factorised algorithm (Lesecq and Barraud, 2002) • Theoretical property [0, 1[ : simpler demonstration
= P Factorisation - 6 • Directly with P (general formulation) (Tran Dinh, 2005) ck, Mk: dependent
Factorisation - summary • Absolutely necessary to ensure numerical stability • Academic example (Lesecq and Barraud, 2002) n = 8, M = hilb(8)=[hij = 1/(i+j-1)], c = ones (8,1), y = 1 temp = invhilb(9), d = temp(1:8,9) = 0.001 not factorised = - 47.6 and factirised = 1.7 10-2 • Practical problem (identification) • Theoretical properties: easier demonstration • Parameterised family (Durieu, et al., 1996) P and M algorithms (Lesecq and Barraud, 2002) • General formulation P and M algorithms (Tran Dinh, 2005)
Motivation Notations and definitions Outer bounding ellipsoid Algorithm(s) Parameterised family Simple example Factorisation Examples:Identification Convergence conditions Common difficulties Choice of the “bound” Industrial context: input? Extra Inner bounding Uncertainty in the model References Outline
Examples - 1 • Industrial Data: • 1st example: industrial Looks like 1st order, 2 parameters aim: model identification diagnosis • 2nd example: LIRMM robot 14 parameters 14 000 regressors! aim: model identification, large problem
Examples - 2 • 1st example: recorded on a process (valve) output input
No ellipsoid update Examples - 3 • 1st example • Data re-used several times • Determinant criterion • = 0.002 • Measurement and regressor known Determinant criterion 1st circulation of data
2 c 1 Examples - 4 Ellipsoid updating • 1st example: parameters
Examples - 5 • 1st example det(10) det(1) Gain properly identified Trace(10) Trace(1)
Examples - 7 • 2nd example: LIRMM parallel robot N = 3500
Examples – 8 • 2nd example: Recorded data (for instance) Sequential algorithm
criterion Examples - 9 No empty intersection = 6 Nm • 2nd example: parameters (60 circulations)
Parallel robot, det, family of ellipsoids Factorisation interest No factorisation Thanks to N. Ramdani Work done by N. Ramdani P. Poignet LIRMM Factorisation
Examples - 10 • 2nd example: Model reconsidered split in several models = 6 Nm 1st model
Examples - 11 Center, obtained with = 6 Nm and 60 circulations • 2nd example: Adaptation of the bound Far from hypothesis! • Analysis of data • Reject “outliers” • “heavy tail”
Examples - 12 60 circulations • 2nd example: Adaptation of the bound: “heavy tail”