1 / 30

Point processes on the line . Nerve firing.

Explore point processes on the line N(t) in R, with consistent set of distributions. Learn about point process building blocks, surprise events, conditional intensity, autointensity, covariance density, and more in this comprehensive study.

esullivan
Download Presentation

Point processes on the line . Nerve firing.

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Point processes on the line. Nerve firing.

  2. Stochastic point process. Building blocks Process on R {N(t)}, t in R, with consistent set of distributions Pr{N(I1)=k1 ,..., N(In)=kn } k1 ,...,kn integers  0 I's Borel sets of R. Consistentency example. If I1 , I2 disjoint Pr{N(I1)= k1 , N(I2)=k2 , N(I1 or I2)=k3 } =1 if k1 + k2 =k3 = 0 otherwise Guttorp book, Chapter 5

  3. Points: ... -1  0  1  ... discontinuities of {N} N(t) = #{0 < j  t} Simple: j k if j  k points are isolated dN(t) = 0 or 1 Surprise. A simple point process is determined by its void probabilities Pr{N(I) = 0} I compact

  4. Conditional intensity. Simple case History Ht = {j  t} Pr{dN(t)=1 | Ht } = (t:)dt  r.v. Has all the information Probability points in [0,T) are t1 ,...,tN Pr{dN(t1)=1,..., dN(tN)=1} = (t1)...(tN)exp{- (t)dt}dt1 ... dtN [1-(h)h][1-(2h)h] ... (t1)(t2) ...

  5. Parameters. Suppose points are isolated dN(t) = 1 if point in (t,t+dt] = 0 otherwise 1. (Mean) rate/intensity. E{dN(t)} = pN(t)dt = Pr{dN(t) = 1} j g(j) =  g(s)dN(s) E{j g(j)} =  g(s)pN(s)ds Trend: pN(t) = exp{+t} Cycle:  + cos(t+)  0

  6. Product density of order 2. Pr{dN(s)=1 and dN(t)=1} = E{dN(s)dN(t)} = [(s-t)pN(t) + pNN (s,t)]dsdt Factorial moment

  7. Autointensity. Pr{dN(t)=1|dN(s)=1} = (pNN (s,t)/pN (s))dt s  t = hNN(s,t)dt = pN (t)dt if increments uncorrelated

  8. Covariance density/cumulant density of order 2. cov{dN(s),dN(t)} = qNN(s,t)dsdt st = [(s-t)pN(s)+qNN(s,t)]dsdt generally qNN(s,t) = pNN(s,t) - pN(s) pN(t) st

  9. Identities. 1. j,k g(j ,k ) =  g(s,t)dN(s)dN(t) Expected value. E{ g(s,t)dN(s)dN(t)} =  g(s,t)[(s-t)pN(t)+pNN (s,t)]dsdt =  g(t,t)pN(t)dt +  g(s,t)pNN(s,t)dsdt

  10. 2. cov{ g(j ),  h(k )} = cov{ g(s)dN(s),  h(t)dN(t)} =  g(s) h(t)[(s-t)pN(s)+qNN(s,t)]dsdt =  g(t)h(t)pN(t)dt +  g(s)h(t)qNN(s,t)dsdt

  11. Product density of order k. t1,...,tk all distinct Prob{dN(t1)=1,...,dN(tk)=1} =E{dN(t1)...dN(tk)} = pN...N (t1,...,tk)dt1 ...dtk

  12. Proof of Central Limit Theorem via cumulants in i.i.d. case. Normal distribution facts. 1. Determined by its moments 2. Cumulants of order  2 identically 0 Y1, Y2, ... i.i.d. mean 0, variance 2, all moments, E{Yk} k=1,2,3,4,... existing Sn = Y1 + Y2 + ... + Yn E{Sn } = 0 var{ Sn} = n 2 cumr Sn = n r cumr Y = cum{Y,...,Y} cumr {Sn / n} = n r / nr/2  0 for r = 3, 4, ...  2 r = 2 as n  

  13. Cumulant density of order k. t1,...,tk distinct cum{dN(t1),...,dN(tk)} = qN...N (t1 ,...,tk)dt1 ...dtk

  14. Stationarity. Joint distributions, Pr{N(I1+t)=k1 ,..., N(In+t)=kn} k1 ,...,kn integers  0 do not depend on t for n=1,2,... Rate. E{dN(t)=pNdt Product density of order 2. Pr{dN(t+u)=1 and dN(t)=1} = [(u)pN + pNN (u)]dtdu

  15. Autointensity. Pr{dN(t+u)=1|dN(t)=1} = (pNN (u)/pN)du u  0 = hN(u)du Covariance density. cov{dN(t+u),dN(t)} = [(u)pN + qNN (u)]dtdu

  16. Taking "E" again,

  17. Association. Measuring? Due to chance? Are two processes associated? Eg. t.s. and p.p. How strongly? Can one predict one from the other? Some characteristics of dependence: E(XY)  E(X) E(Y) E(Y|X) = g(X) X = g (), Y = h(),  r.v. f (x,y)  f (x) f(y) corr(X,Y)  0

  18. Bivariate point process case. Two types of points (j ,k) Crossintensity. Prob{dN(t)=1|dM(s)=1} =(pMN(t,s)/pM(s))dt Cross-covariance density. cov{dM(s),dN(t)} = qMN(s,t)dsdt no ()

  19. Mixing. cov{dN(t+u),dN(t)} small for large |u| |pNN(u) - pNpN| small for large |u| hNN(u) = pNN(u)/pN ~ pN for large |u|  |qNN(u)|du <  See preceding examples

  20. Power spectral density. frequency-side, , vs. time-side, t /2 : frequency (cycles/unit time) Non-negative Unifies analyses of processes of widely varying types

  21. Examples.

  22. Spectral representation. stationary increments - Kolmogorov

  23. Algebra/calculus of point processes. Consider process {j, j+u}. Stationary case dN(t) = dM(t) + dM(t+u) Taking "E", pNdt = pMdt+ pMdt pN = 2 pM

  24. Taking "E" again,

More Related