1 / 47

Platform-based Design

Platform-based Design. Exploiting ILP VLIW architectures (part a). TU/e 5kk70 Henk Corporaal Bart Mesman. VLIW = Very Long Instruction Word architecture. Instruction format:. operation 1. operation 2. operation 3. operation 4. operation 5. What are we talking about?.

Download Presentation

Platform-based Design

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Platform-based Design Exploiting ILP VLIW architectures (part a) TU/e 5kk70 Henk Corporaal Bart Mesman

  2. VLIW = Very Long Instruction Word architecture Instruction format: operation 1 operation 2 operation 3 operation 4 operation 5 What are we talking about? ILP = Instruction Level Parallelism = ability to perform multiple operations (or instructions), from a single instruction stream, in parallel Platform Design H. Corporaal and B. Mesman

  3. VLIW: Topics Overview • Enhance performance: architecture methods • Instruction Level Parallelism • Limits on ILP • VLIW • Examples • Clustering • Code generation • Hands-on Platform Design H. Corporaal and B. Mesman

  4. Enhance performance: 3 architecture methods • (Super)-pipelining • Powerful instructions • MD-technique • multiple data operands per operation • MO-technique • multiple operations per instruction • Multiple instruction issue Platform Design H. Corporaal and B. Mesman

  5. IF IF IF IF DC DC DC DC RF RF RF RF EX EX EX EX WB WB WB WB Architecture methodsPipelined Execution of Instructions IF: Instruction Fetch DC: Instruction Decode RF: Register Fetch EX: Execute instruction WB: Write Result Register CYCLE 1 2 3 4 5 6 7 8 1 2 INSTRUCTION 3 4 Simple 5-stage pipeline • Purpose of pipelining: • Reduce #gate_levels in critical path • Reduce CPI close to one • More efficient Hardware • Problems • Hazards: pipeline stalls • Structural hazards: add more hardware • Control hazards, branch penalties: use branch prediction • Data hazards: by passing required Platform Design H. Corporaal and B. Mesman

  6. * Architecture methodsPipelined Execution of Instructions Superpipelining: • Split one or more of the critical pipeline stages Platform Design H. Corporaal and B. Mesman

  7. Architecture methodsPowerful Instructions (1) MD-technique • Multiple data operands per operation • SIMD: Single Instruction Multiple Data Vector instruction: for (i=0, i++, i<64) c[i] = a[i] + 5*b[i]; c = a + 5*b Assembly: set vl,64 ldv v1,0(r2) mulvi v2,v1,5 ldv v1,0(r1) addv v3,v1,v2 stv v3,0(r3) Platform Design H. Corporaal and B. Mesman

  8. SIMD Execution Method time node1 node2 node-K Instruction 1 Instruction 2 Instruction 3 Instruction n Architecture methodsPowerful Instructions (1) SIMD computing • Nodes used for independent operations • Mesh or hypercube connectivity • Exploit data locality of e.g. image processing applications • Dense encoding (few instruction bits needed) Platform Design H. Corporaal and B. Mesman

  9. * * * * Architecture methodsPowerful Instructions (1) • Sub-word parallelism • SIMD on restricted scale: • Used for Multi-media instructions • Examples • MMX, SUN-VIS, HP MAX-2, AMD-K7/Athlon 3Dnow, Trimedia II • Example: i=1..4|ai-bi| Platform Design H. Corporaal and B. Mesman

  10. Architecture methodsPowerful Instructions (2) MO-technique: multiple operations per instruction • CISC (Complex Instruction Set Computer) • VLIW (Very Long Instruction Word) FU 1 FU 2 FU 3 FU 4 FU 5 field sub r8, r5, 3 and r1, r5, 12 mul r6, r5, r2 ld r3, 0(r5) bnez r5, 13 instruction VLIW instruction example Platform Design H. Corporaal and B. Mesman

  11. VLIW architecture: central Register File Register file Exec unit 1 Exec unit 2 Exec unit 3 Exec unit 4 Exec unit 5 Exec unit 6 Exec unit 7 Exec unit 8 Exec unit 9 Issue slot 1 Issue slot 2 Issue slot 3 Platform Design H. Corporaal and B. Mesman

  12. TM1000 DSPCPU Register file (128 regs, 32 bit, 15 ports) 5 constant 5 ALU 2 memory 2 shift 2 DSP-ALU 2 DSP-mul 3 branch 2 FP ALU 2 Int/FP ALU 1 FP compare 1 FP div/sqrt Exec unit Exec unit Exec unit Exec unit Exec unit Data cache (16 kB) Instruction register (5 issue slots) PC Instruction cache (32kB) Platform Design H. Corporaal and B. Mesman

  13. I/O INTERFACE D-CACHE I-CACHE I-Cache D-cache 32K 16K TAG TAG TAG SEQUENCER / DECODE TAG (FLOAT) DSPALU2 IFMUL2 FCOMP2 DSPMUL2 FALU3 ALU3 ALU4 ALU2 REGFILE 128 REGS X 32 BITS DSPALU0 SHIFTER0 FTOUGH1 SHIFTER1 (FLOAT) IFMUL1 FALU0 DSPMUL1 ALU1 ALU0 TriMedia TM32A processor 0.18 micron area : 16.9mm2 200 MHz (typ) 1.4 W 7 mW/MHz (MIPS= 0.9 mW/MHz) Platform Design H. Corporaal and B. Mesman

  14. Architecture methods: Powerful Instructions (2) VLIW Characteristics • Only RISC like operation support • Short cycle times • Flexible: Can implement any FU mixture • Extensible • Tight inter FU connectivity required • Large instructions (up to 1000 bits) • Not binary compatible • But good compilers exist Platform Design H. Corporaal and B. Mesman

  15. Architecture methodsMultiple instruction issue (per cycle) Who guarantees semantic correctness? • can instructions be executed in parallel • User specifies multiple instruction streams • MIMD (Multiple Instruction Multiple Data) • Run-time detection of ready instructions • Superscalar • Compile into dataflow representation • Dataflow processors Platform Design H. Corporaal and B. Mesman

  16. Multiple instruction issueThree Approaches Example code a := b + 15; c := 3.14 * d; e := c / f; Translation to DDG (Data Dependence Graph) &d ld 3.14 &f &b ld ld * 15 &c + / st &a &e st st Platform Design H. Corporaal and B. Mesman

  17. Instr. Sequential Code Dataflow Code I1 ld r1,M(&b) ld(M(&b) -> I2 I2 addi r1,r1,15 addi 15 -> I3 I3 st r1,M(&a) st M(&a) I4 ld r1,M(&d) ld M(&d) -> I5 I5 muli r1,r1,3.14 muli 3.14 -> I6, I8 I6 st r1,M(&c) st M(&c) I7 ld r2,M(&f) ld M(&f) -> I8 I8 div r1,r1,r2 div -> I9 I9 st r1,M(&e) st M(&e) Generated Code Notes: • An MIMD may execute two streams: (1) I1-I3 (2) I4-I9 • No dependencies between streams; in practice communication and synchronization required between streams • A superscalar issues multiple instructions from sequential stream • Obey dependencies (True and name dependencies) • Reverse engineering of DDG needed at run-time • Dataflow code is direct representation of DDG Platform Design H. Corporaal and B. Mesman

  18. FU-1 FU-2 FU-K Multiple Instruction Issue:Data flow processor Token Matching Token Store Instruction Generate Instruction Store Result Tokens Reservation Stations Platform Design H. Corporaal and B. Mesman

  19. IF DC RF EX WB IF DC/RF EX WB IF2 IFk IF1 IF3 DC3 DC1 DC2 DCk ISSUE ISSUE ISSUE ISSUE RF3 RF1 RF2 RFk EX2 EX1 EX3 EXk ROB ROB ROB ROB WB2 WB1 WB3 WBk IF1 IF2 --- IFs DC RF EX1 EX2 --- EX5 WB IF DC RF1 EX1 WB1 RF1 EX1 WB1 RF2 EX2 WB2 RF2 EX2 WB2 RFk EXk WBk RFk EXk WBk Instruction Pipeline Overview CISC RISC Superscalar Superpipelined DATAFLOW VLIW Platform Design H. Corporaal and B. Mesman

  20. Four dimensional representation of the architecture design space <I, O, D, S> SIMD 100 Data/operation ‘D’ 10 Vector CISC Superscalar MIMD Dataflow 0.1 10 100 RISC Instructions/cycle ‘I’ Superpipelined 10 VLIW 10 Operations/instruction ‘O’ Superpipelining Degree ‘S’ Platform Design H. Corporaal and B. Mesman

  21. Architecture K I O D S Mpar CISC 1 0.2 1.2 1.1 1 0.26 RISC 1 1 1 1 1.2 1.2 VLIW 10 1 10 1 1.2 12 Superscalar 3 3 1 1 1.2 3.6 Superpipelined 1 1 1 1 3 3 Vector 7 0.1 1 64 5 32 SIMD 128 1 1 128 1.2 154 MIMD 32 32 1 1 1.2 38 Dataflow 10 10 1 1 1.2 12 Architecture design space Typical values of K (# of functional units or processor nodes), and <I, O, D, S> for different architectures S(architecture) = f(Op) * lt (Op) Op I_set Mpar = I*O*D*S Platform Design H. Corporaal and B. Mesman

  22. Overview • Enhance performance: architecture methods • Instruction Level Parallelism • limits on ILP • VLIW • Examples • Clustering • Code generation • Hands-on Platform Design H. Corporaal and B. Mesman

  23. FU-1 CPU FU-2 Instruction fetch unit Instruction decode unit Instruction memory FU-3 Bypassing network Data memory Register file FU-4 FU-5 General organization of an ILP architecture Platform Design H. Corporaal and B. Mesman

  24. Motivation for ILP • Increasing VLSI densities; decreasing feature size • Increasing performance requirements • New application areas, like • multi-media (image, audio, video, 3-D) • intelligent search and filtering engines • neural, fuzzy, genetic computing • More functionality • Use of existing Code (Compatibility) • Low Power: P = fCVdd2 Platform Design H. Corporaal and B. Mesman

  25. Low power through parallelism • Sequential Processor • Switching capacitance C • Frequency f • Voltage V • P = fCV2 • Parallel Processor (two times the number of units) • Switching capacitance 2C • Frequency f/2 • Voltage V’ < V • P = f/2 2C V’2 =fCV’2 Platform Design H. Corporaal and B. Mesman

  26. Measuring and exploiting available ILP • How much ILP is there in applications? • How to measure parallelism within applications? • Using existing compiler • Using trace analysis • Track all the real data dependencies (RaWs) of instructions from issue window • register dependence • memory dependence • Check for correct branch prediction • if prediction correct continue • if wrong, flush schedule and start in next cycle Platform Design H. Corporaal and B. Mesman

  27. Trace set r1,0 set r2,3 set r3,&A st r1,0(r3) add r1,r1,1 add r3,r3,4 brne r1,r2,Loop st r1,0(r3) add r1,r1,1 add r3,r3,4 brne r1,r2,Loop st r1,0(r3) add r1,r1,1 add r3,r3,4 brne r1,r2,Loop add r1,r5,3 Trace analysis Compiled code set r1,0 set r2,3 set r3,&A Loop: st r1,0(r3) add r1,r1,1 add r3,r3,4 brne r1,r2,Loop add r1,r5,3 Program For i := 0..2 A[i] := i; S := X+3; How parallel can this code be executed? Platform Design H. Corporaal and B. Mesman

  28. Trace analysis Parallel Trace set r1,0 set r2,3 set r3,&A st r1,0(r3) add r1,r1,1 add r3,r3,4 st r1,0(r3) add r1,r1,1 add r3,r3,4 brne r1,r2,Loop st r1,0(r3) add r1,r1,1 add r3,r3,4 brne r1,r2,Loop brne r1,r2,Loop add r1,r5,3 Max ILP = Speedup = Lparallel / Lserial = 16 / 6 = 2.7 Platform Design H. Corporaal and B. Mesman

  29. Ideal Processor Assumptions for ideal/perfect processor: 1. Register renaming– infinite number of virtual registers => all register WAW & WAR hazards avoided 2. Branch and Jump prediction– Perfect => all program instructions available for execution 3. Memory-address alias analysis– addresses are known. A store can be moved before a load provided addresses not equal Also: • unlimited number of instructions issued/cycle (unlimited resources), and • unlimited instruction window • perfect caches • 1 cycle latency for all instructions (FP *,/) Programs were compiled using MIPS compiler with maximum optimization level Platform Design H. Corporaal and B. Mesman

  30. Upper Limit to ILP: Ideal Processor Integer: 18 - 60 FP: 75 - 150 IPC Platform Design H. Corporaal and B. Mesman

  31. Window Size and Branch Impact • Change from infinite window to examine 2000 and issue at most 64 instructions per cycle FP: 15 - 45 Integer: 6 – 12 IPC PerfectTournamentBHT(512)ProfileNo prediction Platform Design H. Corporaal and B. Mesman

  32. Impact of Limited Renaming Registers • Changes: 2000 instr. window, 64 instr. issue, 8K 2-level predictor (slightly better than tournament predictor) FP: 11 - 45 Integer: 5 - 15 IPC Infinite2561286432 Platform Design H. Corporaal and B. Mesman

  33. Memory Address Alias Impact • Changes: 2000 instr. window, 64 instr. issue, 8K 2-level predictor, 256 renaming registers FP: 4 - 45 (Fortran, no heap) Integer: 4 - 9 IPC PerfectGlobal/stack perfectInspectionNone Platform Design H. Corporaal and B. Mesman

  34. Window Size Impact • Assumptions: Perfect disambiguation, 1K Selective predictor, 16 entry return stack, 64 renaming registers, issue as many as window FP: 8 - 45 IPC Integer: 6 - 12 Infinite2561286432 16 8 4 Platform Design H. Corporaal and B. Mesman

  35. How to Exceed ILP Limits of This Study? • WAR and WAW hazards through memory: eliminated WAW and WAR hazards through register renaming, but not in memory • Unnecessary dependences • compiler did not unroll loops so iteration variable dependence • Overcoming the data flow limit: value prediction, predicting values and speculating on prediction • Address value prediction and speculation predicts addresses and speculates by reordering loads and stores. Could provide better aliasing analysis Platform Design H. Corporaal and B. Mesman

  36. Conclusions • Amount of parallelism is limited • higher in Multi-Media • higher in kernels • Trace analysis detects all types of parallelism • task, data and operation types • Detected parallelism depends on • quality of compiler • hardware • source-code transformations Platform Design H. Corporaal and B. Mesman

  37. Overview • Enhance performance: architecture methods • Instruction Level Parallelism • VLIW • Examples • C6 • TM • IA-64: Itanium, .... • TTA • Clustering • Code generation • Hands-on Platform Design H. Corporaal and B. Mesman

  38. Instruction Memory Int FU Int FU Int FU LD/ST LD/ST FP FU FP FU Int Register File Floating Point Register File Data Memory VLIW concept A VLIW architecture with 7 FUs Instruction register Function units Platform Design H. Corporaal and B. Mesman

  39. VLIW characteristics • Multiple operations per instruction • One instruction per cycle issued (at most) • Compiler is in control • Only RISC like operation support • Short cycle times • Easier to compile for • Flexible: Can implement any FU mixture • Extensible / Scalable However: • tight inter FU connectivity required • not binary compatible !! • (new long instruction format) Platform Design H. Corporaal and B. Mesman

  40. VelociTIC6x datapath Platform Design H. Corporaal and B. Mesman

  41. VLIW example: TMS320C62 TMS320C62 VelociTI Processor • 8 operations (of 32-bit) per instruction (256 bit) • Two clusters • 8 Fus: 4 Fus / cluster : (2 Multipliers, 6 ALUs) • 2 x 16 registers • One bus available to write in register file of other cluster • Flexible addressing modes (like circular addressing) • Flexible instruction packing • All instruction conditional • 5 ns, 200 MHz, 0.25 um, 5-layer CMOS • 128 KB on-chip RAM Platform Design H. Corporaal and B. Mesman

  42. VLIW example: Trimedia TM1000 DSPCPU Register file (128 regs, 32 bit, 15 ports) 5 constant 5 ALU 2 memory 2 shift 2 DSP-ALU 2 DSP-mul 3 branch 2 FP ALU 2 Int/FP ALU 1 FP compare 1 FP div/sqrt Exec unit Exec unit Exec unit Exec unit Exec unit Data cache (16 kB) Instruction register (5 issue slots) PC Instruction cache (32kB) Platform Design H. Corporaal and B. Mesman

  43. Intel Architecture IA-64 Explicit Parallel Instruction Computer (EPIC) • IA-64 architecture -> Itanium, first realization Register model: • 128 64-bit int x bits, stack, rotating • 128 82-bit floating point, rotating • 64 1-bit boolean • 8 64-bit branch target address • system control registers Platform Design H. Corporaal and B. Mesman

  44. EPIC Architecture: IA-64 • Instructions grouped in 128-bit bundles • 3 * 41-bit instruction • 5 template bits, indicate type and stop location • Each 41-bit instruction • starts with 4-bit opcode, and • ends with 6-bit guard (boolean) register-id • Supports speculative loads Platform Design H. Corporaal and B. Mesman

  45. Itanium Platform Design H. Corporaal and B. Mesman

  46. Itanium 2: McKinley Platform Design H. Corporaal and B. Mesman

  47. EPIC Architecture: IA-64 • EPIC allows for more binary compatibility then a plain VLIW: • Function unit assignment performed at run-time • Lock when FU results not available • See other website for more info on IA-64: • www.ics.ele.tue.nl/~heco/courses/ACA • (look at related material) Platform Design H. Corporaal and B. Mesman

More Related