300 likes | 422 Views
d- a. 1+R(E * ). p-p. a - 6 Li. E * (MeV). Probing two-particle sources in HIC. Giuseppe Verde, NSCL/Michigan State University. HIC03, Montreal, 25-28 June, 2003. Outline p-p correlation functions: physics information content Imaging
E N D
d-a 1+R(E*) p-p a-6Li E*(MeV) Probing two-particle sources in HIC Giuseppe Verde, NSCL/Michigan State University HIC03, Montreal, 25-28 June, 2003 • Outline • p-p correlation functions: physics information content • Imaging • Complex particle correlations (d-a), effects of collective flow • Conclusions
Secondary decays Fragmentation Projectile Target Pre-equilibrium Compression Expansion Long time scales Short time scales HIC at intermediate energies Probe nuclear equation of state (EoS) • Volume, density, shape, lifetime of fragmenting system • Probe reaction models (transport, dynamics/EoS) • Find pace-time probes of the reaction:… Taking “photographs”
HBT: R. Hanbury Brown, R.Q. Twiss, Phil. Mag., Ser. 7 45 (1954) 663 R d << R Static systems: exploring the geometry (size, R) Intensity interferometry: from large scales ... Star … to subatomic physic scales (p-p, K-K, g-g, p-p, n-n, IMF-IMF, …) G. Goldhaber et al., PR 120 (1960) 300 Detectors Nuclear reaction R+Vt d >> R Fast evolving systems: 10-23-10-15 sec: geometry changing in time
1+R(q) 1+R(q) q (MeV/c) q (MeV/c) Measuring correlation functions LASSA (IU, MSU, WU) p-p d-a 6Li2.19 6Li4.31 124Sn E/A=50 MeV/u R(q) probes space-time properties of source 112Sn
= Source function Probability distribution of emitting a pair separated by • when last particle is emitted • If (not simultaneous) Space-time ambiguity in Directional correlations to reduce space-time ambiguity… … only if r0 Koonin-Pratt Eqn and Source function S.E. Koonin, PLB70 (1977) 43 S.Pratt et al., PRC42 (1990) 2646
Detectors Very-Long-Lived emitting sources … such as secondary decays, evaporation, … proton proton Source elongated up to Directional correlation functions insensitive
Angle-averaging over 14N+197Au E/A=75 MeV q~25o r0=3.4 fm 4.2 5.9 “Common wisdom”… R(20 MeV/c) Size Angle-averaged correlation functions • Spherical symmetric Gaussian profiles extensively used Gaussian spherical sources
Proton emission: Fast Slow Fast: Pre-equilibrium Slow: Evaporation, Secondary Decays Fast and slow emitting sources in HIC • Low q region not accessible experimentally: probing only fast source Fast Slow Contribution from:
G. Verde at al., PRC65, 054609 (2002) Slope~ 2.7 MeV/c/fm Width – FWHM (MeV/c) C(q)= Size (r0) • Width (not height!!) of peak at 20 MeV/c measures uniquely the size of the source Size of two-proton sources
Peak 2 Peak width (MeV/c) Peak 1 Size (fm) Fast and slow d-a sources • Size of fast source from width of peak 2 d-a source d-a correlation 1 6Li (2.19) 1+R(q) S(r) (fm-3) 2 6Li (4.31) r (fm) q (MeV/c) Peak 1 dominated by detector resolution
p-p correlations: physics information content Ytotal=Pre-eq. + Sec. Decays Yfast + Yslow G. Verde at al., PRC65, 054609 (2002) Peak width (shape) Size (shape) of two-proton fast source S(r) G. Verde et al., PRC65, 054609 (2002) 1+R(q) Peak Height Relative contribution from fast pre-eq. source Yfast/Ytotal q (MeV/c) Shape analysis required!
KP Eqn Source Function Imaging = Inverting KP Eqn • Model independent and multi-dimensional approach All the points deviating from 1 contain information about S(r), not only C(q=20 MeV/c) Imaging two-proton sources D.A. Brown, P. Danielewicz PRC57 (1998) 2474, PRC64 (2001) 014902 G. Verde et al., PRC65 (2002) 054609
r0 (fm)= 3.4 4.2 5.9 Zero-lifetime Gaussian sources Imaging 14N+197Au E/A=75 MeV qave~25o • Imaging: profile of the short-lived dynamical source • size from r1/2 • relative contribution from long-t emissions:
Source Sizes Long-lived contributions 7 5 1-f (%) r1/2(fm) 4 3.1 2.5 2.9 Properties of two-proton sources • r1/2 weakly sensitive to Psum: size of fast dynamical sources • Long-lifetime contributions 1-f strongly depend on Psum
Imaging p-p correlations • Profile of dynamical two-proton emitting source • Size of emitting sources – from peak width (shape), not from peak height! • Measure densities • Relative contributions from FAST and SLOW emitting sources • Constraints on secondary decays
BUU sin-med Height of the peak not reproduced Long-lived emissions not handled correctly BUU sfree Ar+Sc Imaging analysis • Constraints contributions from secondary decays with f-value Test of transport theories G. Verde et al., Phys. Rev. C 67, 034606 (2003)
Model BUU red NN BUU free NN Source shape: probing transport models G. Verde et al., Phys. Rev. C 67, 034606 (2003) Ar+Sc, E/A=120 MeV Shape of BUU source probes probes details about sNN Imaging S(r) (fm-3) Reduced sNN favored r (fm)
Lie-Wen Chen et al., nucl-th/0211002, Nov 2002 Asy-stiff Asy-stiff Asy-soft Vasy(MeV) 1+R(q) Asy-soft r/r0 q (MeV/c) IBUU: Isospin effects in p-p correlations 52Ca+48Ca, 80 MeV/u • Peak height sensitive to Vasy(r/r0): Shorter emission times for asy-stiff? • Peak height not reliable (long-lifetime decays)
Asy-stiff Asy-soft r1/2~4.4 fm 1+R(q) Asy-soft S(r) (a.u.) Asy-stiff r1/2~3.6 fm q (MeV/c) r (MeV/c) IBUU: Source shape and Asy-EOS Lie-Wen Chen et al., nucl-th/0211002, Nov 2002 Sources 52Ca+48Ca, 80 MeV/u P>500 MeV/c • Shape of peak sensitive to Asy-EOS • Asy-soft: more extended source, longer proton emission times • Measure at q<15 MeV/c required!!
Sources Isospin effects in Two-proton sources Central collisions Preliminary Preliminary LASSA • Need more statistics and higher resolution (future experiments): explore the shape up to q<8 MeV/c • Protons from secondary decays: more in 112Sn+112Sn
Two-proton correlations in 112Sn+112Sn and 124Sn+124Sn 124Sn+124Sn 124Sn+124Sn 112Sn+112Sn 1+R(q) 1+R(q) 112Sn+112Sn Fast protons Slow protons E1,E2>60 MeV E1,E2<50 MeV q (MeV/c) q (MeV/c)
d-a p-p 1+R(E*) a-6Li E*(MeV) Complex particle correlations • Densities, fast/slow contributions, source profiles and test of reaction models
d-a in 112Sn+124Sn reactions Sources Central 112Sn+124Sn, E/A=50 MeV d-a Size~3.5+-0.5 Size 1+R(q) S(r) (fm-3) p-p Size~5.5+-0.5 LASSA r (fm) q (MeV/c) • Good news: d-a can probe long-lived emitting source • Warning! Height of peak 2 overpredicted
Collective motion requires special considerations • Reduction of source size • Shape of correlation functions between complex particles (d-a) strongly distorted.
Thermal + Collective motion Only thermal motion Position-momentum correlations Detectors Source size reduction Size reduction enhanced with heavier particles
Event mixing Event a Yields Coincidence Event b 1+R(Erel) Correlation Erel (MeV) Collective motion distortions G. Verde et al., in prep.
Effective temperature correction G. Verde et al., in prep. Nuclear part of correlation function needs correction No Flow 1+R(q) Flow 1+R(q) KP eq. q (MeV/c) Data reproduced for Teff=5 MeV q (MeV/c)
Size correction: p-p vs d-a Central 112Sn+124Sn, E/A=50 MeV Before correction Source sizes p-p 5.50.2 fm d-a 3.5 0.5 fm S(r) (fm-3) p-p d-a After correction Source sizes p-p 7.50.5 fm d-a 6 1 fm S(r) (fm-3) p-p d-a • Differences p-p vs d-a reduced • p-p and d-a probe different sources r (fm)
Conclusions • Important physics information from imaging of p-p • size (from width/shape of correlation peak), • contributions from dynamical/equilibrium emissions, • profiles of dynamical sources (probes of microscopic models, BUU, IBUU, …) • Extension to more complex particle correlations (d-a) • Effects of collective flow need special consideration (sizes, shape of nuclear resonance peaks) • Two-particle correlations can provide “snapshots” of emitting sources… • …and we actually need them!
Acknowledgements D.A. Brown, LLNL P. Danielewicz, C.K. Gelbke, T.X. Liu, X.D. Liu, W.G. Lynch, W.P. Tan, M.B. Tsang, A.Wagner, H.S. Xu, NSCL/MSU B. Davin, Y. Larochelle, R.T. de Souza, IU R.J. Charity, L.G. Sobotka, WU