1 / 10

Michigan.do

Michigan.do. . * construct new variables; . gen mi=state==26; . * michigan dummy; . gen hike=month>=33; . * treatment period dummy; . gen treatment=hike*mi;. . * get means of smoking rates for the 2x2 box; . sort mi hike; . by mi hike: sum smoked;. . by mi hike: sum smoked;

evania
Download Presentation

Michigan.do

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Michigan.do

  2. . * construct new variables; • . gen mi=state==26; • . * michigan dummy; • . gen hike=month>=33; • . * treatment period dummy; • . gen treatment=hike*mi;

  3. . * get means of smoking rates for the 2x2 box; • . sort mi hike; • . by mi hike: sum smoked;

  4. . by mi hike: sum smoked; • ------------------------------------------------------------------------------- • -> mi = 0, hike = 0 • Variable | Obs Mean Std. Dev. Min Max • -------------+-------------------------------------------------------- • smoked | 26441 .1950002 .3962083 0 1 • ------------------------------------------------------------------------------- • -> mi = 0, hike = 1 • Variable | Obs Mean Std. Dev. Min Max • -------------+-------------------------------------------------------- • smoked | 18852 .1827923 .3865064 0 1 • ------------------------------------------------------------------------------- • -> mi = 1, hike = 0 • Variable | Obs Mean Std. Dev. Min Max • -------------+-------------------------------------------------------- • smoked | 17790 .1957279 .3967712 0 1 • ------------------------------------------------------------------------------- • -> mi = 1, hike = 1 • Variable | Obs Mean Std. Dev. Min Max • -------------+-------------------------------------------------------- • smoked | 12943 .1783203 .382797 0 1

  5. Smoking Rates

  6. . * now run the regression; • . reg smoked mi hike treatment; • Source | SS df MS Number of obs = 76026 • -------------+------------------------------ F( 3, 76022) = 8.59 • Model | 3.95288903 3 1.31762968 Prob > F = 0.0000 • Residual | 11663.5888 76022 .153423862 R-squared = 0.0003 • -------------+------------------------------ Adj R-squared = 0.0003 • Total | 11667.5417 76025 .153469803 Root MSE = .39169 • ------------------------------------------------------------------------------ • smoked | Coef. Std. Err. t P>|t| [95% Conf. Interval] • -------------+---------------------------------------------------------------- • mi | .0007277 .0037982 0.19 0.848 -.0067168 .0081723 • hike | -.0122079 .0037337 -3.27 0.001 -.019526 -.0048898 • treatment | -.0051997 .0058668 -0.89 0.375 -.0166985 .0062991 • _cons | .1950002 .0024088 80.95 0.000 .1902789 .1997215 • ------------------------------------------------------------------------------ Notice the estimate for treatment is arithmetically Identical to the number from the 2x2 box

  7. . * now control for observed characteristics; • . * generate dummy variables to control for race, parity, education and age; • . xi i.age i.mrace3 i.meduc6 i.ageg; • . * add these variables to the model; • . reg smoked mi hike treatment _I*;

  8. . reg smoked mi hike treatment _I*; • Source | SS df MS Number of obs = 76026 • -------------+------------------------------ F( 15, 76010) = 474.06 • Model | 998.136229 15 66.5424153 Prob > F = 0.0000 • Residual | 10669.4055 76010 .140368445 R-squared = 0.0855 • -------------+------------------------------ Adj R-squared = 0.0854 • Total | 11667.5417 76025 .153469803 Root MSE = .37466 • ------------------------------------------------------------------------------ • smoked | Coef. Std. Err. t P>|t| [95% Conf. Interval] • -------------+---------------------------------------------------------------- • mi | -.0039841 .0036501 -1.09 0.275 -.0111382 .00317 • hike | -.0030636 .0035745 -0.86 0.391 -.0100696 .0039424 • treatment | -.0051552 .0056122 -0.92 0.358 -.0161551 .0058447 • _Iageg_2 | .105199 .0052283 20.12 0.000 .0949516 .1154464 • Delete some results • _Imeduc6_6 | .0156193 .0145937 1.07 0.284 -.0129844 .044223 • _cons | .1476714 .0092008 16.05 0.000 .1296378 .165705 • ------------------------------------------------------------------------------

  9. . * now control for all time periods and all states; • . * need to define time and state dummies; • . * in the regression, drop the mi and hike variables; • . xi i.age i.mrace3 i.meduc6 i.ageg i.state i.month; • . reg smoked treatment _I*;

  10. . reg smoked treatment _I*; • Source | SS df MS Number of obs = 76026 • -------------+------------------------------ F( 70, 75955) = 102.48 • Model | 1006.80931 70 14.3829901 Prob > F = 0.0000 • Residual | 10660.7324 75955 .140355901 R-squared = 0.0863 • -------------+------------------------------ Adj R-squared = 0.0854 • Total | 11667.5417 76025 .153469803 Root MSE = .37464 • ------------------------------------------------------------------------------ • smoked | Coef. Std. Err. t P>|t| [95% Conf. Interval] • -------------+---------------------------------------------------------------- • treatment | -.0053194 .0056134 -0.95 0.343 -.0163216 .0056828 • _Iageg_2 | .1051191 .0052311 20.10 0.000 .0948663 .115372 • Delete some results • _Istate_26 | -.0046835 .0051651 -0.91 0.365 -.0148071 .0054402 • _Istate_42 | -.0009752 .0045039 -0.22 0.829 -.0098028 .0078525 • _Imonth_2 | .0273311 .0136851 2.00 0.046 .0005083 .0541538 • Delete some results • _Imonth_3 | .0305209 .014018 2.18 0.029 .0030457 .0579961 • _Imonth_56 | .009216 .0148571 0.62 0.535 -.0199038 .0383358 • _cons | .1292655 .0138104 9.36 0.000 .1021972 .1563339 • ------------------------------------------------------------------------------

More Related