360 likes | 562 Views
The Milky Way Galaxy. Our Parent Galaxy. From Earth, we see few stars when looking out of galaxy (red arrows), many when looking in (blue and white arrows). Milky Way is how our Galaxy appears in the night sky (b).
E N D
Our Parent Galaxy From Earth, we see few stars when looking out of galaxy (red arrows), many when looking in (blue and white arrows). Milky Way is how our Galaxy appears in the night sky (b). What is a galaxy? A galaxy is a gargantuan collection of stellar and interstellar matter—stars, gas, dust, neutron stars, black holes—isolated in space and held together by its own gravity.
Our Parent Galaxy Our Galaxy is a spiral galaxy. Here are three similar galaxies.
Measuring the Milky Way One of the first attempts to measure the Milky Way was done by William Herschel using visible stars in the late 18th century. Unfortunately, he was not aware that most of the galaxy, particularly the center, is blocked from view by vast clouds of gas and dust.
Lets recall… • Variable Stars—stars whose luminosities change significantly over relatively short periods of time • Only a small fraction of our galaxy, but they are of extreme importance • Pulsating Variable Stars • A star whose luminosity varies in a predictable, periodic way • Examples: Cephied Variables, RR Lyrae Hubble Space Telescope image of the galaxy M100 showing a number of Cepheid variables. The Cepheid star in the center of the box is located in a star-forming region of the spiral arm of the galaxy
Measuring the Milky Way We have already encountered variable stars – novae, supernovae, and related phenomena – which are called cataclysmic variables. There are other stars whose luminosity varies in a regular way, but much more subtly. These are called intrinsic variables. Two types of intrinsic variables have been found: RR Lyrae stars and Cepheids. Cepheid Variable Stars and Distance Determination
Measuring the Milky Way The upper plot is an RR Lyrae star. All such stars have essentially the same luminosity curve, with periods from 0.5 to 1 day. The lower plot is a Cepheid variable; Cepheid periods range from about 1 to 100 days.
Measuring the Milky Way The variability of these stars comes from a dynamic balance between gravity and pressure – they have large oscillations around stability.
Measuring the Milky Way The usefulness of these stars comes from their period–luminosity relationship.
Measuring the Milky Way • This allows us to measure the distances to these stars. • RR Lyrae stars all have about the same luminosity; knowing their apparent magnitude allows us to calculate the distance. • Cepheids have a luminosity that is strongly correlated with the period of their oscillations; once the period is measured, the luminosity is known and we can proceed as above.
Measuring the Milky Way Many RR Lyrae stars are found in globular clusters. These clusters are not all in the plane of the galaxy, so they are not obscured by dust and can be measured. This yields a much more accurate picture of the extent of our Galaxy and our place within it.
Measuring the Milky Way We have now expanded our cosmic distance ladder one more step.
So what are the dimensions of our galaxy? • Some terms: • Disk-plane in which the spirals, bars, and disks of disk galaxies exist. The disks tend to have more gas and dust, and younger stars than galactic bulges. • Bulge-tightly packed group of stars within a larger formation. Generally refers to the central group of stars found in spiral galaxies. • Globular Clusters-spherical collection of stars that orbits a galactic core as a satellite. They are bound very tightly by gravity, and have relatively high stellar densities toward their centers.
Halo-A dark matter halo is a hypothetical component of a galaxy, which extends beyond the edge of the visible galaxy and dominates the total mass. Since they consist of dark matter, haloes cannot be observed directly, but their existence is inferred through their effects on the motions of stars and gas in galaxies.
Galactic Structure This artist’s conception shows the various parts of our Galaxy, and the position of our Sun.
Galactic Structure The galactic halo and globular clusters formed very early; the halo is essentially spherical. All the stars in the halo are very old, and there is no gas and dust. The galactic disk is where the youngest stars are, as well as star formation regions – emission nebulae, large clouds of gas and dust. Surrounding the galactic center is the galactic bulge, which contains a mix of older and younger stars.
Galactic Structure This infrared view of our Galaxy shows much more detail of the galactic center than the visible-light view does, as infrared is not as much absorbed by gas and dust.
Galactic Structure Stellar orbits in the disk are in a plane and in the same direction; orbits in the halo and bulge are much more random.
The Formation of the Milky Way Any theory of galaxy formation should be able to account for all the properties below.
The Formation of the Milky Way The formation of the galaxy is believed to be similar to the formation of the solar system, but on a much larger scale.
Galactic Spiral Arms Measurement of the position and motion of gas clouds shows that the Milky Way has a spiral form.
Galactic Spiral Arms The spiral arms cannot rotate along with the galaxy; they would “curl up.”
Galactic Spiral Arms Rather, they appear to be density waves, with stars moving in and out of them much as cars move in and out of a traffic jam.
Galactic Spiral Arms As clouds of gas and dust move through the spiral arms, the increased density triggers star formation. This may contribute to propagation of the arms. The origin of the spiral arms is not yet understood.
The Mass of the Milky Way Galaxy The orbital speed of an object depends only on the amount of mass between it and the galactic center.
The Mass of the Milky Way Galaxy Once all the galaxy is within an orbit, the velocity should diminish with distance, as the dashed curve shows. It doesn’t; more than twice the mass of the galaxy would have to be outside the visible part to reproduce the observed curve.
The Mass of the Milky Way Galaxy • What could this “dark matter” be? It is dark at all wavelengths, not just the visible. • Stellar-mass black holes? • Probably no way enough could have been created • Brown dwarfs, faint white dwarfs, and red dwarfs? • Currently the best star-like option • Weird subatomic particles? • Could be, although no evidence so far
14.6 The Mass of the Milky Way Galaxy The bending of spacetime can allow a large mass to act as a gravitational lens: Observation of such events suggests that low-mass white dwarfs could account for about half of the mass needed. The rest is still a mystery.
14.7 The Galactic Center This is a view toward the galactic center, in visible light. The two arrows in the inset indicate the location of the center; it is entirely obscured by dust.
14.7 The Galactic Center These images, in infrared, radio, and X ray, offer a different view of the galactic center.
14.7 The Galactic Center • The galactic center appears to have • a stellar density a million times higher than near Earth • a ring of molecular gas 400 pc across • strong magnetic fields • a rotating ring or disk of matter a few parsecs across • a strong X-ray source at the center
14.7 The Galactic Center Apparently, there is an enormous black hole at the center of the galaxy, which is the source of these phenomena. An accretion disk surrounding the black hole emits enormous amounts of radiation.
14.7 The Galactic Center These objects are very close to the galactic center. The orbit on the right is the best fit; it assumes a central black hole of 3.7 million solar masses.
Summary of Chapter 14 • A galaxy is stellar and interstellar matter bound by its own gravity. • Our Galaxy is spiral. • Variable stars can be used for distance measurement, through period–luminosity relationship. • True extent of a galaxy can be mapped out using globular clusters. • Star formation occurs in disk, but not in halo or bulge.
Summary of Chapter 14, cont. • Spiral arms may be density waves. • Galactic rotation curve shows large amounts of undetectable mass at large radii; called dark matter. • Activity near galactic center suggests presence of a 3.7-million-solar-mass black hole.