430 likes | 443 Views
Learn about structured data including arrays, structs, and unions in Intel GAS Bytes C. Understand array allocation and access with examples and coding principles. See how arrays are implemented with pointers and loops.
E N D
Machine-Level Programming IV:Structured Data • Topics • Arrays • Structs • Unions
Basic Data Types • Integral • Stored & operated on in general registers • Signed vs. unsigned depends on instructions used Intel GAS Bytes C byte b 1 [unsigned] char word w 2 [unsigned] short double word l 4 [unsigned] int • Floating Point • Stored & operated on in floating point registers Intel GAS Bytes C Single s 4 float Double l 8 double Extended t 10/12 long double
char string[12]; x x + 12 int val[5]; double a[4]; x x + 4 x + 8 x + 12 x + 16 x + 20 x x + 8 x + 16 x + 24 x + 32 x x + 4 x + 8 Array Allocation • Basic Principle TA[L]; • Array of data type T and length L • Contiguously allocated region of L * sizeof(T) bytes char *p[3];
int val[5]; 1 5 2 1 3 x x + 4 x + 8 x + 12 x + 16 x + 20 Array Access • Basic Principle TA[L]; • Array of data type T and length L • Identifier A can be used as a pointer to array element 0 • Reference Type Value val[4] int 3 val int * x val+1int * x + 4 &val[2]int * x + 8 val[5]int ?? *(val+1)int 5 val + iint * x + 4 i
zip_dig cmu; zip_dig ucb; zip_dig mit; 0 1 9 4 5 2 1 7 2 2 3 1 9 0 3 36 16 56 40 60 20 24 64 44 28 68 48 32 52 72 76 36 56 Array Example typedef int zip_dig[5]; zip_dig cmu = { 1, 5, 2, 1, 3 }; zip_dig mit = { 0, 2, 1, 3, 9 }; zip_dig ucb = { 9, 4, 7, 2, 0 }; • Notes • Declaration “zip_dig cmu” equivalent to “int cmu[5]” • Example arrays were allocated in successive 20 byte blocks • Not guaranteed to happen in general
Array Accessing Example • Computation • Register %edx contains starting address of array • Register %eax contains array index • Desired digit at 4*%eax + %edx • Use memory reference (%edx,%eax,4) • Memory Reference Code int get_digit (zip_dig z, int dig) { return z[dig]; } # %edx = z # %eax = dig movl (%edx,%eax,4),%eax # z[dig]
zip_dig cmu; zip_dig mit; zip_dig ucb; 1 0 9 2 5 4 7 1 2 2 1 3 9 0 3 36 16 56 40 20 60 44 24 64 68 48 28 32 72 52 56 36 76 Referencing Examples • Code Does Not Do Any Bounds Checking! • Reference Address Value Guaranteed? mit[3] 36 + 4* 3 = 48 3 mit[5] 36 + 4* 5 = 56 9 mit[-1] 36 + 4*-1 = 32 3 cmu[15] 16 + 4*15 = 76 ?? • Out of range behavior implementation-dependent • No guaranteed relative allocation of different arrays Yes No No No
Array Loop Example int zd2int(zip_dig z) { int i; int zi = 0; for (i = 0; i < 5; i++) { zi = 10 * zi + z[i]; } return zi; } • Original Source • Transformed Version • As generated by GCC • Eliminate loop variable i • Convert array code to pointer code • Express in do-while form • No need to test at entrance int zd2int(zip_dig z) { int zi = 0; int *zend = z + 4; do { zi = 10 * zi + *z; z++; } while(z <= zend); return zi; }
Array Loop Implementation int zd2int(zip_dig z) { int zi = 0; int *zend = z + 4; do { zi = 10 * zi + *z; z++; } while(z <= zend); return zi; } int zd2int(zip_dig z) { int zi = 0; int *zend = z + 4; do { zi = 10 * zi + *z; z++; } while(z <= zend); return zi; } int zd2int(zip_dig z) { int zi = 0; int *zend = z + 4; do { zi = 10 * zi + *z; z++; } while(z <= zend); return zi; } int zd2int(zip_dig z) { int zi = 0; int *zend = z + 4; do { zi = 10 * zi + *z; z++; } while(z <= zend); return zi; } int zd2int(zip_dig z) { int zi = 0; int *zend = z + 4; do { zi = 10 * zi + *z; z++; } while(z <= zend); return zi; } • Registers %ecx z %eax zi %ebx zend • Computations • 10*zi + *z implemented as *z + 2*(zi+4*zi) • z++ increments by 4 # %ecx = z xorl %eax,%eax # zi = 0 leal 16(%ecx),%ebx # zend = z+4 .L59: leal (%eax,%eax,4),%edx # 5*zi movl (%ecx),%eax # *z addl $4,%ecx # z++ leal (%eax,%edx,2),%eax # zi = *z + 2*(5*zi) cmpl %ebx,%ecx # z : zend jle .L59 # if <= goto loop # %ecx = z xorl %eax,%eax # zi = 0 leal 16(%ecx),%ebx # zend = z+4 .L59: leal (%eax,%eax,4),%edx # 5*zi movl (%ecx),%eax # *z addl $4,%ecx # z++ leal (%eax,%edx,2),%eax # zi = *z + 2*(5*zi) cmpl %ebx,%ecx # z : zend jle .L59 # if <= goto loop # %ecx = z xorl %eax,%eax # zi = 0 leal 16(%ecx),%ebx # zend = z+4 .L59: leal (%eax,%eax,4),%edx # 5*zi movl (%ecx),%eax # *z addl $4,%ecx # z++ leal (%eax,%edx,2),%eax # zi = *z + 2*(5*zi) cmpl %ebx,%ecx # z : zend jle .L59 # if <= goto loop # %ecx = z xorl %eax,%eax # zi = 0 leal 16(%ecx),%ebx # zend = z+4 .L59: leal (%eax,%eax,4),%edx # 5*zi movl (%ecx),%eax # *z addl $4,%ecx # z++ leal (%eax,%edx,2),%eax # zi = *z + 2*(5*zi) cmpl %ebx,%ecx # z : zend jle .L59 # if <= goto loop # %ecx = z xorl %eax,%eax # zi = 0 leal 16(%ecx),%ebx # zend = z+4 .L59: leal (%eax,%eax,4),%edx # 5*zi movl (%ecx),%eax # *z addl $4,%ecx # z++ leal (%eax,%edx,2),%eax # zi = *z + 2*(5*zi) cmpl %ebx,%ecx # z : zend jle .L59 # if <= goto loop
zip_dig pgh[4]; 1 1 1 1 5 5 5 5 2 2 2 2 1 2 0 1 7 1 6 3 76 96 116 136 156 Nested Array Example #define PCOUNT 4 zip_dig pgh[PCOUNT] = {{1, 5, 2, 0, 6}, {1, 5, 2, 1, 3 }, {1, 5, 2, 1, 7 }, {1, 5, 2, 2, 1 }}; • Declaration “zip_dig pgh[4]” equivalent to “int pgh[4][5]” • Variable pgh denotes array of 4 elements • Allocated contiguously • Each element is an array of 5 int’s • Allocated contiguously • “Row-Major” ordering of all elements guaranteed
A[0][0] • • • A[0][C-1] • • • • • • • • • • • • • • • A [0] [0] • • • A [R-1] [0] A [1] [0] A [0] [C-1] A [1] [C-1] A [R-1] [C-1] A[R-1][0] • • • A[R-1][C-1] Nested Array Allocation • Declaration TA[R][C]; • Array of data type T • R rows, C columns • Type T element requires K bytes • Array Size • R * C * K bytes • Arrangement • Row-Major Ordering int A[R][C]; 4*R*C Bytes
A[0] A[i] A[R-1] • • • A [i] [0] • • • A [R-1] [0] A [0] [0] • • • A [0] [C-1] A [i] [C-1] A [R-1] [C-1] Nested Array Row Access • Row Vectors • A[i] is array of C elements • Each element of type T • Starting address A + i * C * K int A[R][C]; • • • • • • A A+i*C*4 A+(R-1)*C*4
Nested Array Row Access Code int *get_pgh_zip(int index) { return pgh[index]; } • Row Vector • pgh[index] is array of 5 int’s • Starting address pgh+20*index • Code • Computes and returns address • Compute as pgh + 4*(index+4*index) # %eax = index leal (%eax,%eax,4),%eax # 5 * index leal pgh(,%eax,4),%eax # pgh + (20 * index)
A[0] A[R-1] • • • • • • A [R-1] [0] A [0] [0] A [R-1] [C-1] A [0] [C-1] Nested Array Element Access • Array Elements • A[i][j] is element of type T • Address A + (i * C + j) * K A [i] [j] int A[R][C]; A[i] • • • • • • • • • A [i] [j] • • • A A+i*C*4 A+(R-1)*C*4 A+(i*C+j)*4
Nested Array Element Access Code • Array Elements • pgh[index][dig] is int • Address: pgh + 20*index + 4*dig • Code • Computes address pgh + 4*dig + 4*(index+4*index) • movl performs memory reference int get_pgh_digit (int index, int dig) { return pgh[index][dig]; } # %ecx = dig # %eax = index leal 0(,%ecx,4),%edx # 4*dig leal (%eax,%eax,4),%eax # 5*index movl pgh(%edx,%eax,4),%eax # *(pgh + 4*dig + 20*index)
9 1 0 4 2 5 7 1 2 1 2 3 3 9 0 cmu 36 56 16 60 40 20 44 64 24 68 48 28 32 72 52 36 56 76 univ 160 36 mit 164 16 ucb 168 56 Multi-Level Array Example • Variable univ denotes array of 3 elements • Each element is a pointer • 4 bytes • Each pointer points to array of int’s zip_dig cmu = { 1, 5, 2, 1, 3 }; zip_dig mit = { 0, 2, 1, 3, 9 }; zip_dig ucb = { 9, 4, 7, 2, 0 }; #define UCOUNT 3 int *univ[UCOUNT] = {mit, cmu, ucb};
Element Access in Multi-Level Array int get_univ_digit (int index, int dig) { return univ[index][dig]; } • Computation • Element access Mem[Mem[univ+4*index]+4*dig] • Must do two memory reads • First get pointer to row array • Then access element within array # %ecx = index # %eax = dig leal 0(,%ecx,4),%edx # 4*index movl univ(%edx),%edx # Mem[univ+4*index] movl (%edx,%eax,4),%eax # Mem[...+4*dig]
Similar C references Nested Array Element at Mem[pgh+20*index+4*dig] Different address computation Multi-Level Array Element at Mem[Mem[univ+4*index]+4*dig] Array Element Accesses int get_pgh_digit (int index, int dig) { return pgh[index][dig]; } int get_univ_digit (int index, int dig) { return univ[index][dig]; }
(*,k) (i,*) Row-wise A B Column-wise Using Nested Arrays #define N 16 typedef int fix_matrix[N][N]; • Strengths • C compiler handles doubly subscripted arrays • Generates very efficient code • Avoids multiply in index computation • Limitation • Only works if have fixed array size /* Compute element i,k of fixed matrix product */ int fix_prod_ele (fix_matrix a, fix_matrix b, int i, int k) { int j; int result = 0; for (j = 0; j < N; j++) result += a[i][j]*b[j][k]; return result; }
Dynamic Nested Arrays int * new_var_matrix(int n) { return (int *) calloc(sizeof(int), n*n); } • Strength • Can create matrix of arbitrary size • Programming • Must do index computation explicitly • Performance • Accessing single element costly • Must do multiplication int var_ele (int *a, int i, int j, int n) { return a[i*n+j]; } movl 12(%ebp),%eax # i movl 8(%ebp),%edx # a imull 20(%ebp),%eax # n*i addl 16(%ebp),%eax # n*i+j movl (%edx,%eax,4),%eax # Mem[a+4*(i*n+j)]
(*,k) (i,*) Row-wise A B Column-wise Dynamic Array Multiplication /* Compute element i,k of variable matrix product */ int var_prod_ele (int *a, int *b, int i, int k, int n) { int j; int result = 0; for (j = 0; j < n; j++) result += a[i*n+j] * b[j*n+k]; return result; } • Without Optimizations • Multiplies • 2 for subscripts • 1 for data • Adds • 4 for array indexing • 1 for loop index • 1 for data
Optimizing Dynamic Array Mult. { int j; int result = 0; for (j = 0; j < n; j++) result += a[i*n+j] * b[j*n+k]; return result; } • Optimizations • Performed when set optimization level to -O2 • Code Motion • Expression i*n can be computed outside loop • Strength Reduction • Incrementing j has effect of incrementing j*n+k by n • Performance • Compiler can optimize regular access patterns { int j; int result = 0; int iTn = i*n; int jTnPk = k; for (j = 0; j < n; j++) { result += a[iTn+j] * b[jTnPk]; jTnPk += n; } return result; }
i a p 20 0 4 16 Structures • Concept • Contiguously-allocated region of memory • Refer to members within structure by names • Members may be of different types • Accessing Structure Member struct rec { int i; int a[3]; int *p; }; Memory Layout Assembly void set_i(struct rec *r, int val) { r->i = val; } # %eax = val # %edx = r movl %eax,(%edx) # Mem[r] = val
Generating Pointer to Struct. Member r struct rec { int i; int a[3]; int *p; }; • Generating Pointer to Array Element • Offset of each structure member determined at compile time i a p 0 4 16 r + 4 + 4*idx int * find_a (struct rec *r, int idx) { return &r->a[idx]; } # %ecx = idx # %edx = r leal 0(,%ecx,4),%eax # 4*idx leal 4(%eax,%edx),%eax # r+4*idx+4
Element i i i a a p 0 0 4 4 16 16 Structure Referencing (Cont.) • C Code struct rec { int i; int a[3]; int *p; }; void set_p(struct rec *r) { r->p = &r->a[r->i]; } # %edx = r movl (%edx),%ecx # r->i leal 0(,%ecx,4),%eax # 4*(r->i) leal 4(%edx,%eax),%eax # r+4+4*(r->i) movl %eax,16(%edx) # Update r->p
Alignment • Aligned Data • Primitive data type requires K bytes • Address must be multiple of K • Required on some machines; advised on IA32 • treated differently by Linux and Windows! • Motivation for Aligning Data • Memory accessed by (aligned) double or quad-words • Inefficient to load or store datum that spans quad word boundaries • Virtual memory very tricky when datum spans 2 pages • Compiler • Inserts gaps in structure to ensure correct alignment of fields
Specific Cases of Alignment • Size of Primitive Data Type: • 1 byte (e.g., char) • no restrictions on address • 2 bytes (e.g., short) • lowest 1 bit of address must be 02 • 4 bytes (e.g., int, float, char *, etc.) • lowest 2 bits of address must be 002 • 8 bytes (e.g., double) • Windows (and most other OS’s & instruction sets): • lowest 3 bits of address must be 0002 • Linux: • lowest 2 bits of address must be 002 • i.e., treated the same as a 4-byte primitive data type • 12 bytes (long double) • Linux: • lowest 2 bits of address must be 002 • i.e., treated the same as a 4-byte primitive data type
Satisfying Alignment with Structures • Offsets Within Structure • Must satisfy element’s alignment requirement • Overall Structure Placement • Each structure has alignment requirement K • Largest alignment of any element • Initial address & structure length must be multiples of K • Example (under Windows): • K = 8, due to double element struct S1 { char c; int i[2]; double v; } *p; c i[0] i[1] v p+0 p+4 p+8 p+16 p+24 Multiple of 4 Multiple of 8 Multiple of 8 Multiple of 8
c i[0] i[1] v p+0 p+4 p+8 p+16 p+24 Multiple of 4 Multiple of 8 Multiple of 8 Multiple of 8 c i[0] i[1] v p+0 p+4 p+8 p+12 p+20 Multiple of 4 Multiple of 4 Multiple of 4 Multiple of 4 Linux vs. Windows struct S1 { char c; int i[2]; double v; } *p; • Windows (including Cygwin): • K = 8, due to double element • Linux: • K = 4; double treated like a 4-byte data type
x i[0] i[1] c p+0 p+8 p+12 p+16 Windows: p+24 Linux: p+20 x[0] x[1] i[0] i[1] c p+0 p+4 p+8 p+12 p+16 p+20 Overall Alignment Requirement struct S2 { double x; int i[2]; char c; } *p; p must be multiple of: 8 for Windows 4 for Linux struct S3 { float x[2]; int i[2]; char c; } *p; p must be multiple of 4 (in either OS)
c1 v c2 i p+0 p+8 p+16 p+20 p+24 v c1 c2 i p+0 p+8 p+12 p+16 Ordering Elements Within Structure struct S4 { char c1; double v; char c2; int i; } *p; 10 bytes wasted space in Windows struct S5 { double v; char c1; char c2; int i; } *p; 2 bytes wasted space
a[1].i a[1].v a[1].j • • • a[0] a[1] a[2] a+0 a+12 a+24 a+36 Arrays of Structures • Principle • Allocated by repeating allocation for array type • In general, may nest arrays & structures to arbitrary depth struct S6 { short i; float v; short j; } a[10]; a+12 a+16 a+20 a+24
a[i].i a[i].v a[i].j a[0] • • • a[i] • • • a+12i a+0 Accessing Element within Array • Compute offset to start of structure • Compute 12*i as 4*(i+2i) • Access element according to its offset within structure • Offset by 8 • Assembler gives displacement as a + 8 • Linker must set actual value struct S6 { short i; float v; short j; } a[10]; short get_j(int idx) { return a[idx].j; } # %eax = idx leal (%eax,%eax,2),%eax # 3*idx movswl a+8(,%eax,4),%eax a+12i a+12i+8
a[0] • • • a[i] • • • a+12i a+0 a[1].i a[1].v a[1].j a+12i a+12i+4 Satisfying Alignment within Structure • Achieving Alignment • Starting address of structure array must be multiple of worst-case alignment for any element • a must be multiple of 4 • Offset of element within structure must be multiple of element’s alignment requirement • v’s offset of 4 is a multiple of 4 • Overall size of structure must be multiple of worst-case alignment for any element • Structure padded with unused space to be 12 bytes struct S6 { short i; float v; short j; } a[10]; Multiple of 4 Multiple of 4
c i[0] i[1] c i[0] i[1] v v up+0 up+4 up+8 sp+0 sp+4 sp+8 sp+16 sp+24 Union Allocation • Principles • Overlay union elements • Allocate according to largest element • Can only use one field at a time union U1 { char c; int i[2]; double v; } *up; struct S1 { char c; int i[2]; double v; } *sp; (Windows alignment)
Using Union to Access Bit Patterns typedef union { float f; unsigned u; } bit_float_t; float bit2float(unsigned u) { bit_float_t arg; arg.u = u; return arg.f; } • Get direct access to bit representation of float • bit2float generates float with given bit pattern • NOT the same as (float) u • float2bit generates bit pattern from float • NOT the same as (unsigned) f u f unsigned float2bit(float f) { bit_float_t arg; arg.f = f; return arg.u; } 0 4
Byte Ordering Revisited • Idea • Short/long/quad words stored in memory as 2/4/8 consecutive bytes • Which is most (least) significant? • Can cause problems when exchanging binary data between machines • Big Endian • Most significant byte has lowest address • PowerPC, Sparc • Little Endian • Least significant byte has lowest address • Intel x86, Alpha
Byte Ordering Example union { unsigned char c[8]; unsigned short s[4]; unsigned int i[2]; unsigned long l[1]; } dw; c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7] s[0] s[1] s[2] s[3] i[0] i[1] l[0]
Byte Ordering Example (Cont). int j; for (j = 0; j < 8; j++) dw.c[j] = 0xf0 + j; printf("Characters 0-7 == [0x%x,0x%x,0x%x,0x%x,0x%x,0x%x,0x%x,0x%x]\n", dw.c[0], dw.c[1], dw.c[2], dw.c[3], dw.c[4], dw.c[5], dw.c[6], dw.c[7]); printf("Shorts 0-3 == [0x%x,0x%x,0x%x,0x%x]\n", dw.s[0], dw.s[1], dw.s[2], dw.s[3]); printf("Ints 0-1 == [0x%x,0x%x]\n", dw.i[0], dw.i[1]); printf("Long 0 == [0x%lx]\n", dw.l[0]);
f0 f1 f2 f3 f4 f5 f6 f7 c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7] LSB MSB LSB MSB LSB MSB LSB MSB s[0] s[1] s[2] s[3] LSB MSB LSB MSB i[0] i[1] LSB MSB l[0] Print Byte Ordering on x86 Little Endian Output on Pentium: Characters 0-7 == [0xf0,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7] Shorts 0-3 == [0xf1f0,0xf3f2,0xf5f4,0xf7f6] Ints 0-1 == [0xf3f2f1f0,0xf7f6f5f4] Long 0 == [f3f2f1f0]
f0 f1 f2 f3 f4 f5 f6 f7 c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7] MSB LSB MSB LSB MSB LSB MSB LSB s[0] s[1] s[2] s[3] MSB LSB MSB LSB i[0] i[1] MSB LSB l[0] Print Byte Ordering on Sun Big Endian Output on Sun: Characters 0-7 == [0xf0,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7] Shorts 0-3 == [0xf0f1,0xf2f3,0xf4f5,0xf6f7] Ints 0-1 == [0xf0f1f2f3,0xf4f5f6f7] Long 0 == [0xf0f1f2f3]
f0 f1 f2 f3 f4 f5 f6 f7 c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7] LSB MSB LSB MSB LSB MSB LSB MSB s[0] s[1] s[2] s[3] LSB MSB LSB MSB i[0] i[1] LSB MSB l[0] Print Byte Ordering on Alpha Little Endian Output on Alpha: Characters 0-7 == [0xf0,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7] Shorts 0-3 == [0xf1f0,0xf3f2,0xf5f4,0xf7f6] Ints 0-1 == [0xf3f2f1f0,0xf7f6f5f4] Long 0 == [0xf7f6f5f4f3f2f1f0]
Summary • Arrays in C • Contiguous allocation of memory • Pointer to first element • No bounds checking • Compiler Optimizations • Compiler often turns array code into pointer code (zd2int) • Uses addressing modes to scale array indices • Lots of tricks to improve array indexing in loops • Structures • Allocate bytes in order declared • Pad in middle and at end to satisfy alignment • Unions • Overlay declarations • Way to circumvent type system