430 likes | 450 Views
The dark side of the Universe: dark energy and dark matter Harutyun Khachatryan Center for Cosmology and Astrophysics. Content of the Universe after Planck. Density proportion evolution. Lambda chronology. 2013 Planck, density content revision. Cosmological models.
E N D
The dark side of the Universe: dark energy and dark matter Harutyun Khachatryan Center for Cosmology and Astrophysics
Lambda chronology 2013 Planck, density content revision
Cosmological models Friedmann-Robertson-Walker metric Spatial curvature K=0 flat (Minkowski), K=+1 positive curvature(sphere) K=-1 negative curvature spectral redshift cosmic redshift Continuity equation Evolution equation
Luminosity distance For concordance model for flat universe dark energy 0.69 matter density 0.31 radiation density 10^-4
Cosmological constant Λ? Einstein equations 1916 Einstein 1917
Dark energy 1998 Hubble diagram
Astrophysical parameters L luminosity, total energy emitted by an object per second. m apparent magnitude, observed brightness. M absolute magnitude, calibrated brightness. M=m-5(log10(DL)-1)
Standard candles Classical Cepheids Type Ia Supernovae
Crab nebula 1054 A.D. supernova remnant
Hubble’s law Theory: from FRW metric follows V=H(r)r for small distances, z << 1. Observations: Hubble redshift-distance law of galaxies V = H r V- velocity of the galaxy, r- distance to the galaxy, Hubble’s constant H = 69.32 ± 0.80 (km/s)/Mpc (after Planck).
Hubble’s or Lemaitre’s law? Hubble 1929 Lemaitre 1927
Hubble diagram indicating accelerated expansion Riess et al. 1998
Higher redshifts: gamma-ray bursters • z=1-10 and more (arguable) • emits in few seconds as much as the Sun during its lifetime • nature unknown, some empirical relations exit Can they be used for the Hubble diagram?
Calibrating GRBs Empirical relations Amati relation lag versus luminosity relation variability versus luminosity relation H. J. M. Cuesta…..H. G. Khachatryan,.. A&A, 2008
Vacuum fluctuations Zeldovich 1967
Dark energy summary • Negative pressure, p=-ρ • Ω=0.69 • Equation of state, cosmological constant w=-1 • Various models: vacuum fluctuations, General Relativity extensions (scalar field coupled, Chern-Simons, f(R), etc), quintessence, holography…
Dark matter chronology • 1932- Jan Oort, stellar motion in the local galactic neighbourhood • 1933- Fritz Zwicky, motion in clusters of galaxies • 1970- Vera Rubin, galaxy rotation curves
Virial theorem Dark matter Coma cluster 2<T>=Vtot Zwicky, F., Helvetica Physica Act 6 (1933)
M31 rotation curve V.C. Rubin & W.K. Ford 1970
Gravitational lensing Einstein 1912,1936
Bullet cluster 1E 0657-558
MOND theory (by Milgrom) MOND acceleration related to the Newtonian acceleration aN at weak acceleration limit of gravity interpolation function
Dark matter summary • Ω=0.27 • Particle candidates: axion, WIMPs, neutrino (small part), supersymmetric particles… • Models: cold dark matter, warm dark matter, hot dark matter • MOND
Challenge to homogeneity of the Universe? Greatest cosmic structure
73 quasar cluster z=1.27, longest dimension 1240 Mpc, mean length 500 Mpc R. Clowes et al. MN, 2013
Conclusions • Modern cosmology passed to the precision • cosmology era. • Dark energy: favored, cosmological constant • w=-1. The nature unknown. • Dark matter: many candidates, none favored. • The nature unknown. • Challenges to the concordance model (CMB • low multipole anomaly, alignments, non- • Gaussianities…).