1 / 10

CLASE 54

3. x. –1. 4. +2. 2. y. x. 5. 2. 3. x. x. 2. –3. y. x. = 7 x. 0. 5 x. 2,1. y. CLASE 54. DESCOMPOSICIÓN FACTORIAL. P( x ). =. 7. ( x  0). Ejercicio 4 a, pág. 22. Si P( x ) = x 3 + x 2 + bx – 8, determina el valor de b para que P( x ) sea divisible por:.

eydie
Download Presentation

CLASE 54

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 3 x –1 4 +2 2 y x 5 2 3 x x 2 –3 y x = 7x 0 5x 2,1 y CLASE 54 DESCOMPOSICIÓN FACTORIAL P(x) = 7 (x 0)

  2. Ejercicio 4 a, pág. 22 Si P(x) = x3 + x2 + bx – 8, determina el valor de b para que P(x) sea divisible por: Si P(a) = 0 entonces P(x) es divisible por x – a. a) x + 1 – 8 P(–1) = (–1)3 + (–1)2 + b(–1) – 8 +1 – b 0 = –1 P(x) = x3 + x2– 8x – 8 es divisible por x + 1. b = – 8

  3. Si P(x) = x3 + x2– 8x – 8 es divisible por x + 1. P(x) = P(x) = ( x + 1) ( x + 1) Q(x) Q(x) 1 1 1 – 8 – 8 – 1 8 0 – 1 – 8 0 0 (x2– 8)

  4. x3 + 4x2 +5x + 2 D(2) = {1; 2} 4 5 1 2 – 1 – 2 – 1 – 3 0 3 2 1 – 1 – 1 – 2 (x +1) (x2+3x +2) 0 1 2 (x +1) (x +2)(x + 1) – 2 – 2 1 0 ( x +1)2 ( x + 2)

  5. Factoriza las siguientes sumas: a) x3 – 7x + 6 b) m4 – 4m3 + 3m2 +2m

  6. Factoriza las siguientes sumas. a) x3 – 7x + 6 1 0 – 7 6 1 1 1 – 6 0 – 6 1 1 (x – 1) (x2 + x – 6) (x – 1) (x + 3) (x – 2)

  7. Factoriza las siguientes sumas: b) m4 – 4m3 + 3m2 +2m m (m3 – 4m2 + 3m + 2) m 1 – 4 3 2 – 2 2 2 – 4 1 – 2 0 – 1 (m – 2) (m2 – 2m – 1)

  8. 3 3 x +y Descomposición factorial Factor común trinomios binomios 2 2 x 2xy + y 2 2 x – y 2 mx + px + q 3 3 x – y 2 polinomios x + px + q  agrupamiento  Compl. Cuad.  Ruffini Combinaciones de casos

  9. Halla los valores de x para los cuales se anula P(x) si: P(x) = x3 + 4x2– 11x – 30 1 4 – 11 – 30 3 21 30 3 1 10 0 7 x = 3 (x2+ 7x + 10) (x –3) x = –2 x = –5 (x –3) (x +2) (x +5)

  10. LIBRO DE DISTRIBUCIÓN GRATUITA. PROHIBIDA SU VENTA Trabajo independiente Capítulo 1 Epígrafe 7 Ejemplos 1 y 2c Ejercicios 1 hasta el 5*

More Related