1 / 25

Dust emission from Haebes: Disks and Envelopes

Dust emission from Haebes: Disks and Envelopes. A. Miroshnichenko (Pulkovo/Toledo) Z. Ivezic (Princeton) D. Vinkovic (UK) M. Elitzur (UK). ApJ 475, L41 (1997; MIE) ApJ 520, L115 (1999; MIVE) in progress (VMIE). CLOUD COMPRESSION  COLLAPSE  FRAGMENTATION  PROTOSTRAS.

eze
Download Presentation

Dust emission from Haebes: Disks and Envelopes

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Dust emission from Haebes: Disks and Envelopes A. Miroshnichenko (Pulkovo/Toledo) Z. Ivezic (Princeton) D. Vinkovic (UK) M. Elitzur (UK) • ApJ 475, L41 (1997; MIE) • ApJ 520, L115 (1999; MIVE) • in progress (VMIE)

  2. CLOUD COMPRESSION  COLLAPSE  FRAGMENTATION  PROTOSTRAS M < Mc  PMS STARS  MS STARS M > Mc  MS STARS

  3. Envelope evolves on free-fall time scale: • tff = 2x105 (104 cm-3/n)1/2 years • Hydrostatic PMS low-mass (M  3M) core evolution: • tpms ~ 3x107(M/M)3 years M  2 M T-Tauri 2 M M  10 M Herbig Ae/Be M  10–15 M no PMS

  4. Protostellar Accretion Disks • R ~ 10 — 100 AU • M ~ .01 — .1 M Evidence in pre-main-sequence:  T Tau stars (M  2 M) ? Herbig Ae/Be stars (2 M M  10 – 15 M) IR ?

  5. Required properties: • Emission from constant-T dust: I = B(T)[1 - exp(-)] • Optically thick: I = B(T) • Optically thin: I = B(T) 

  6. Protostellar Accretion Disks Geometrically thin, optically thick: I = B(T), need temperature distribution

  7. Illuminated Disk r  • Heating: • Cooling: Fem = T4 • Balance: T  r -3/4 (accretion too!) yields: F-4/3

  8. Hillenbrand et al ‘92 • Group 1 (30): F -4/3, disks • Group 2 (11): flat or rising SED, star/disk with additional shell • Group 3 (6): small IR excess

  9. Problems: • Hartman et al ’93: accretion rates are excessive • Di Francesco et al ’94: group 1 IR emission is extended!

  10. Spherical, optically thin shell: T  r -1/2 with  r -p, - get F -(p - 1)( + 4)/2 Since  ~ 1–2, p ~ 3/2 gives F-4/3

  11. Steady-state accretion to point source: Free fall: i.e. v  r-½ so

  12. Depends mostly on type of dust grains overall optical depth density profile DOES NOT depend on dimensions density scale luminosity SCALINGIvezic & Elitzur ’95,’97 The emission from radiatively heated dust DUSTY: http://www.pa.uky.edu/~moshe/dusty/

  13. MIE ’97:   r -3/2

  14. Mannings & Saregnt ’97: 2.6 mm incompatible with MIE: V ~ 102–103 — nonsense! In particular MWC480 MWC683 MS V > 103 600 MIE V = 0.4 0.3 Conclusion: DISKS!

  15. indeed:

  16. However… Extrapolate from 2.6 mm with F1/3 — too little 2.2 m! • IR best explained with optically thin shells, inconsistent with mm • mm emission best explained with optically thick disks, inconsistent with IR Also, MWC 137 imaging: (50 m) = 66” 2” (100 m) = 58” 2” How can that be?

  17. Disk Imbedded in Envelope:

  18. envelope disk Disk Imbedded in Envelope: envelope ( -1.5): T  r –0.36 “standard” disk: T  r –0.75 • At the same radius, disk is cooler than envelope • Smaller disk still contains cooler material

  19. MIVE ‘99 f = f,disk + (1 - )f,env

  20. Implications: • Disk + Envelope resolves all discrepancies • 2 distributions: • Disk: compact mm emission • Envelope: • IR emission • Disk heating • ~ 10-8 Myr –1, Lacc ~ 0.1 L • v ~ 0.1— no molecules • SED + multi- imaging — essential for finding disks

  21. ??? Uniqueness ??? Chiang & Goldreich ’97: • Disk surface layer may mimic shell • Equivalent envelope: V R*/Rsub • However: V ~ 0.1, R*/Rsub ~ 0.01

  22. AB Aur:

  23. Images: NICMOS Grady et al ‘97 Mannings & Sargent ‘97

  24. VMIE, in progress Marsh et al ‘95

  25. 3’ Herbig, 1960: 15 min exposure: SU Aur AB Aur 60 min exposure:

More Related