1 / 7

Correcting back to the electrons after FSR

Correcting back to the electrons after FSR. e, . So far C Z defined w.r.t. electrons before FSR. technically:. Z status = 3 and look for the first 2 children. e , . Which are the C Z if defined w.r.t. electrons after FSR ??. technically:.

Download Presentation

Correcting back to the electrons after FSR

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Correcting back to the electrons after FSR e,  • So far CZ defined w.r.t. electrons before FSR technically: • Z status = 3 and look for the first 2 children e ,  • Which are the CZ if defined w.r.t. electrons after FSR ?? technically: • Z status = 2 and look for the first 2 children Lucia - LAPP Phi* meeting - 3 novembre 2011

  2. before FSR after FSR CZ calorimeters integrate --> the energy measured is closer to before FSR PTZ CZ This is not true for tracks !! * So why CZ* after FSR depend so stronger than CZ* before FSR ? Lucia - LAPP Phi* meeting - 3 novembre 2011

  3. Data driven Systematic uncertainty on * coming from tracking Réponse/suggestions de Attilio Andreazza (traduction de l’italien) Réponse de Attilio à mes questions: • Utiliser les cosmiques ce n’est pas une solution optimale car les distributions angulaires sont très différentes • Utiliser des résonances (V0) n’est pas une bonne idée non plus car éventuels effets de résolution et biais sont dominés par la mesure de l’impulsion Suggestions de Attilio: 1) Donner un signe à * de façon à que si il n’y a pas de bias (mais seulement des effets de résolution) la distribution soit symétrique. (Mais comment ??) 2)Mesurer * en fonction du Phi de la trace positive, comparer avec la même distribution pour des traces négatives (pour différentes rapidités du Z) Lucia - LAPP Phi* meeting - 3 novembre 2011

  4. Proposal for studying the systematic uncertainty coming from tracking • ‘Physics’ is  symmetric (N-)L = (N-)R • Our systematics comes from  and  e+ • The systematic error results from the difference between data and MC on the difference of (N-)L and (N-)R --> look at  for (N-)L, (N-)R • Study  as function of  for BB,BE, EE in data and MC. Apply in MC a possible shift and evaluate the effect on * --> systematics (N-)L (N-)R  Same principle for  Lucia - LAPP Phi* meeting - 3 novembre 2011

  5. MC-Pythia Data (no BKG subtraction) MC-Pythia Data (no BKG subtraction) (N-)L (N-)R (N-)L (N-)R   How to continue(proposal) e+ Discuss this ideas with the Tracking conveners (Attilio) and if OK I’llproceed (N-)L (N-)R e- In the meanwhile, if anybody interested (Ohan?) can look to the suggestion 1) of Attilio or/and any additional welcome suggestion  First results (BB) : Lucia - LAPP Phi* meeting - 3 novembre 2011

  6. totj rel = √(1+ 0.52) syst i rel ~ 1.2 syst i rel Proposal for *, Pt binning: iterative procedure? Already some work done by Ohan and Vincenzo in the line with what was done by Hao (look at Phi* and Pt resolution). Do not remember if the work converged Here my proposal: First step: make analysis with D0 binning and evaluate roughly the systematic uncertainty per bin i ( syst i rel ) in principle this can be iterated Second step: compute the bin sizejfor which: statj rel = (√1/Nj)= 0.5syst i rel (+ require that j> Xphij One then obtains : First attempt (assuming syst i rel = 0.01): Lucia - LAPP Phi* meeting - 3 novembre 2011

  7. ** Bin=1 Valore Initial Bin= 2.643e+04 StatRel Error=0.006151 Nratio= 2.643 Valore binNEW= 0.01189 ValoreNEW=9831 StatRel Error=0.01009 Valore binNEW= 0.01567 ValoreNEW=9487 StatRel Error=0.01027 Valore binNEW= 0.01946 ValoreNEW=9135 StatRel Error=0.01046 ** Bin=2 Valore Initial Bin= 2.401e+04 StatRel Error=0.006454 Nratio= 2.401 Valore binNEW= 0.02208 ValoreNEW=9784 StatRel Error=0.01011 Valore binNEW= 0.02625 ValoreNEW=9348 StatRel Error=0.01034 Valore binNEW= 0.03041 ValoreNEW=8911 StatRel Error=0.01059 ** Bin=3 Valore Initial Bin= 2.15e+04 StatRel Error=0.00682 Nratio= 2.15 Valore binNEW= 0.03233 ValoreNEW=9728 StatRel Error=0.01014 Valore binNEW= 0.03698 ValoreNEW=9190 StatRel Error=0.01043 Valore binNEW= 0.04163 ValoreNEW=8662 StatRel Error=0.01074 ** Bin=4 Valore Initial Bin= 1.902e+04 StatRel Error=0.007252 Nratio= 1.902 Valore binNEW= 0.04263 ValoreNEW=9667 StatRel Error=0.01017 Valore binNEW= 0.04789 ValoreNEW=9019 StatRel Error=0.01053 ** Bin=5 Valore Initial Bin= 1.667e+04 StatRel Error=0.007744 Nratio= 1.667 Valore binNEW= 0.053 ValoreNEW=9606 StatRel Error=0.0102 Valore binNEW= 0.059 ValoreNEW=8867 StatRel Error=0.01062 ** Bin=6 Valore Initial Bin= 1.459e+04 StatRel Error=0.008279 Nratio= 1.459 Valore binNEW= 0.06377 ValoreNEW=9524 StatRel Error=0.01025 Valore binNEW= 0.07131 ValoreNEW=8697 StatRel Error=0.01072 ** Bin=7 Valore Initial Bin= 1.273e+04 StatRel Error=0.008862 Nratio= 1.273 Valore binNEW= 0.07493 ValoreNEW=9588 StatRel Error=0.01021 Valore binNEW= 0.08278 ValoreNEW=8968 StatRel Error=0.01056 ** Bin=8 Valore Initial Bin= 1.157e+04 StatRel Error=0.009298 Lucia - LAPP Phi* meeting - 3 novembre 2011

More Related