1 / 11

CATPAC & LIWC

CATPAC & LIWC. Key output and findings D.K. & B.L. How CATPAC is Used. Reads text to identify most important words Can determine patterns of similarity Produces simple frequency counts The neural network is self-organizing Finds patterns of usage between words Uses clustering algorithms

fabelam
Download Presentation

CATPAC & LIWC

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CATPAC & LIWC Key output and findings D.K. & B.L.

  2. How CATPAC is Used • Reads text to identify most important words • Can determine patterns of similarity • Produces simple frequency counts • The neural network is self-organizing • Finds patterns of usage between words • Uses clustering algorithms • Produces perceptual maps

  3. CATPAC frequencies • TOTAL WORDS 300 THRESHOLD 0.000 • TOTAL UNIQUE WORDS 25 RESTORING FORCE 0.100 • TOTAL EPISODES 294 CYCLES 1 • TOTAL LINES 60 FUNCTION Sigmoid (-1 - +1) • CLAMPING Yes • DESCENDING FREQUENCY LIST ALPHABETICALLY SORTED LIST • CASE CASE CASE CASE • WORD FREQ PCNT FREQ PCNT WORD FREQ PCNT FREQ PCNT • --------------- ---- ---- ---- ---- --------------- ---- ---- ---- ---- • I 47 15.7 201 68.4 A 28 9.3 153 52.0 • A 28 9.3 153 52.0 ABOUT 6 2.0 42 14.3 • MY 19 6.3 89 30.3 ALL 6 2.0 39 13.3 • I'M 16 5.3 76 25.9 AM 14 4.7 86 29.3 • FOR 15 5.0 85 28.9 BE 13 4.3 75 25.5 • AM 14 4.7 86 29.3 CAN 6 2.0 39 13.3 • BE 13 4.3 75 25.5 FOR 15 5.0 85 28.9 • YOU 13 4.3 63 21.4 HAVE 9 3.0 54 18.4 • OUT 12 4.0 73 24.8 I 47 15.7 201 68.4 • KNOW 10 3.3 62 21.1 I'M 16 5.3 76 25.9 • HAVE 9 3.0 54 18.4 KNOW 10 3.3 62 21.1 • ME 9 3.0 51 17.3 LIFE 8 2.7 51 17.3 • ON 9 3.0 62 21.1 LOVE 8 2.7 46 15.6 • SOMEONE 9 3.0 59 20.1 ME 9 3.0 51 17.3 • WITH 9 3.0 58 19.7 MY 19 6.3 89 30.3 • LIFE 8 2.7 51 17.3 NO 6 2.0 41 13.9 • LOVE 8 2.7 46 15.6 NOT 8 2.7 45 15.3 • NOT 8 2.7 45 15.3 ON 9 3.0 62 21.1 • SHOULD 7 2.3 42 14.3 OUT 12 4.0 73 24.8 • SO 7 2.3 49 16.7 SHOULD 7 2.3 42 14.3 • ABOUT 6 2.0 42 14.3 SO 7 2.3 49 16.7 • ALL 6 2.0 39 13.3 SOMEONE 9 3.0 59 20.1 • CAN 6 2.0 39 13.3 WHAT 6 2.0 39 13.3 • NO 6 2.0 41 13.9 WITH 9 3.0 58 19.7 • WHAT 6 2.0 39 13.3 YOU 13 4.3 63 21.4

  4. WARDS METHOD • A M H Y I N I A O S S W A N K W A M C L B S F L O • . Y A O ' O . B U O O I L O N H M E A O E H O I N • . . V U M T . O T . M T L . O A . . N V . O R F . • . . E . . . . U . . E H . . W T . . . E . U . E . • . . . . . . . T . . O . . . . . . . . . . L . . . • . . . . . . . . . . N . . . . . . . . . . D . . . • . . . . . . . . . . E . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . • ^^^ . . . . . . . . . . . . . . . . . . . . . . . • ^^^^^ . . . . . . . . . . . . . . . . . . . . . . • ^^^^^^^ . . . . . . . . . . . . . . . . . . . . . • ^^^^^^^^^ . . . . . . . . . . . . . . . . . . . . • ^^^^^^^^^^^ . . . . . . . . . . . . . . . . . . . • ^^^^^^^^^^^^^ . . . . . . . . . . . . . . . . . . • ^^^^^^^^^^^^^ . . . . . . . . . . . . . ^^^ . . . • ^^^^^^^^^^^^^ . . . . . . . . . . . . . ^^^ . ^^^ • ^^^^^^^^^^^^^ . . . . . . . . . ^^^ . . ^^^ . ^^^ • ^^^^^^^^^^^^^ . . . . . . . ^^^ ^^^ . . ^^^ . ^^^ • ^^^^^^^^^^^^^ . . . . . ^^^ ^^^ ^^^ . . ^^^ . ^^^ • ^^^^^^^^^^^^^ ^^^ . . . ^^^ ^^^ ^^^ . . ^^^ . ^^^ • ^^^^^^^^^^^^^ ^^^ . . . ^^^ ^^^ ^^^ . . ^^^ ^^^^^ • ^^^^^^^^^^^^^ ^^^ . . . ^^^ ^^^ ^^^ ^^^ ^^^ ^^^^^ • ^^^^^^^^^^^^^ ^^^ . ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^^^ • ^^^^^^^^^^^^^ ^^^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^^^ • ^^^^^^^^^^^^^ ^^^^^ ^^^ ^^^ ^^^ ^^^^^^^ ^^^ ^^^^^ • ^^^^^^^^^^^^^ ^^^^^ ^^^ ^^^ ^^^ ^^^^^^^ ^^^^^^^^^ • ^^^^^^^^^^^^^ ^^^^^^^^^ ^^^ ^^^ ^^^^^^^ ^^^^^^^^^ • ^^^^^^^^^^^^^ ^^^^^^^^^ ^^^^^^^ ^^^^^^^ ^^^^^^^^^ • ^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^^ ^^^^^^^ ^^^^^^^^^ • ^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^^^^^^^^^^ ^^^^^^^^^ • ^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ • ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Dendogram output

  5. CATPAC 3-D Perceptual Map

  6. Operating Issues with CATPAC • Exclude dictionary: must amend the default and save or create in correct format • Text input: separating multiple texts requires insertion of a slide barrier • Refining the exclude list and analysis settings can be a long, incremental process • The 3-D visualizing is cluttered for larger numbers of terms

  7. Linguistic Inquiry andWord Count • Provide an effective method for studying emotional/cognitive/structural/process components present in individuals’ verbal and written speech • Calculates % of words that match of up to 84 dimensions • Generates an output that is readable by SPSS or Excel

  8. LIWC / output variables • Text files, once formatted for entry, are processed for up to 84 output variables, including: • 17 standard linguistic dimensions (e.g., word count, percentage of pronouns, articles) • 25 word categories tapping psychological constructs (e.g., affect, cognition) • 10 dimensions related to "relativity" (time, space, motion) • 19 personal concern categories (e.g., work, home, leisure activities)

  9. LIWC / How to… • For best results -> prepare text for analysis (adjust misspellings, inappropriate words, abbreviations) • Adjusting words can be tricky… e.g.: US -> U.S. • Sometimes used to analyze oral conversations/interviews -> transcribe speech to text -> dictionary includes some “nonfluencies” (e.g.: hm, uh, huh, um) • Analyzes data one file at a time • Files: TEXT or ASCII format! Can’t read word document • The longer the document, the better

  10. LIWC / dictionaries • Only counts words that are in the dictionaries • default dictionary: Internal Pennebaker Dictionary -> 2300 words • But you can develop your own dictionary! • To create dictionary: choose “load new dictionary” from the “dictionary” menu • Dictionaries have to be plain text files

  11. LIWC output with standard linguistic dimensions

More Related