180 likes | 383 Views
MATLAB. MATLAB is a high-level technical computing language and interactive environment for algorithm development, data visualization, data analysis and numerical computation. MATLAB. High-level language for technical computing Development environment for managing code,
E N D
MATLAB MATLAB is a high-level technical computing language and interactive environment for algorithm development, data visualization, data analysis and numerical computation.
MATLAB • High-level language for technical computing • Development environment for managing code, files, and data • Interactive tools for iterative exploration, design, and problem solving • Mathematical functions for linear algebra, statistics,Fourier analysis, filtering, optimization, and numerical integration • 2-D and 3-D graphics functions for visualizing data • Tools for building custom graphical user interfaces • Functions for integrating MATLAB based algorithms with external applications and languages, such as C, C++, Fortran, Java, COM, and Microsoft Excel
TASK Find area of surface, which is boundedby the graph of a function f ,axisy and line segmentwith initial point A and end point B. Represent result graphically. A = (0; 0) a B =(3; 0)
Elementary functions of MATLAB Calculation of values of a function Calculation of value of polynomial function . for 2.*2.*2.*2.*2.*2.*2+3.*2.*2.*2.*2+2.*2.*2-7 Or 2.^7+3.*2.^4+2.^3-7 Or 2*2*2*2*2*2*2+3*2*2*2*2+2*2*2-7 Or 2^7+3*2^4+2^3-7 Or p=[1,0,0,3,0,2,0,-7];polyval(p,2) ans = 177
Elementary functions of MATLAB Notation of functions and operators Calculate: , , . a1=sqrt(7) a1 = 2.6458 a2=2^8 a2 = 256 Or a2=pow2(8) a2 = 256 a3 = 1.6266 a3=7^(1/4)
Calculate values of following expressions: z=(2.^3+5.^4).^(1/3) z=8.5862 a=3;b=3;c=4;x=2;y=5; z=(x.^b+y.^c).^(1/a) z=8.5862 a=5;b=5;c=3;x=7;y=2; z=(x.^b+y.^c).^(1/a) z=7.0007 a=7;b=5;c=4;x=2;y=3; z=(x.^b+y.^c).^(1/a) z=1.9647
Calculate values of following expressions: z=log10(24.589) z=1.3907 z=1.5841 z=log(4.875) z=0.7707 z=log(3.457)./log(5) z=log(3.564)./log(1/3) z=-1.1568
Trigonometric functions Calculate , , . u1 = -0.9900 u1=cos(3) u2=asin(0.584) u2 = 0.6236 x=37*pi/180; u3=sin(x) u3 = 0.6018
Exponential functions z=0.1494 z=3./exp(3) z=exp(8)+exp(1/4) z=2.9822e+003 z = 2,982.2 z=23.1700 z=exp(3+1/7)
Conversion from radians to degrees, minutes and seconds of arc x=–0.8660 x=–sqrt(3)./2 z=acos(x) z=2.6180 y=180*acos(x)./pi y=150
x=0.2458 y=1.3225 y=acos(x) y=180*y./pi y=75.7709 0.7709*60 46.2540 0.2540*60 15.2400
x=-0.6874 y=2.3287 y=acos(x) y=180*y./pi y=133.4246 0.4246*60 25.4760 0.4760*60 28.5600
convertx.m y=acos(x); z=180*y./pi; degrees=fix(z); p=(z-degrees)*60; minutes=fix(p); seconds=round((p-minutes)*60); degrees,minutes,seconds x=-0.6874;convertx