220 likes | 456 Views
Proof. D and E are the middle points of AB and AC, DE intersects the circle at G and F, CF // AB. Prove: CD = BC; Δ BCD ~ Δ GBD. Prove: 1. CD = BC. Prove: 1. CD = BC Because AD = DB, AE = EC. Prove: 1. CD = BC Because AD = DB, AE = EC Then DE // BC.
E N D
Proof D and E are the middle points of AB and AC, DE intersects the circle at G and F, CF // AB. Prove: CD = BC; ΔBCD ~ ΔGBD
Prove: 1. CD = BC Because AD = DB, AE = EC
Prove: 1. CD = BC Because AD = DB, AE = EC Then DE // BC
Prove: 1. CD = BC Because AD = DB, AE = EC Then DE // BC We knew CF // AB
Prove: 1. CD = BC Because AD = DB, AE = EC Then DE // BC We knew CF // AB So BCFD is a parallelogram
Prove: 1. CD = BC Because AD = DB, AE = EC Then DE // BC We knew CF // AB So BCFD is a parallelogram Then CF = BD = AD
Prove: 1. CD = BC Because AD = DB, AE = EC Then DE // BC We knew CF // AB So BCFD is a parallelogram Then CF = BD = AD Connect AF, Since AD // CF
Prove: 1. CD = BC Because AD = DB, AE = EC Then DE // BC We knew CF // AB So BCFD is a parallelogram Then CF = BD = AD Connect AF, Since AD // CF ADCF is a parallelogram
Prove: 1. CD = BC Because AD = DB, AE = EC Then DE // BC We knew CF // AB So BCFD is a parallelogram Then CF = BD = AD Connect AF, Since AD // CF ADCF is a parallelogram So CD = AF
Prove: 1. CD = BC Because AD = DB, AE = EC Then DE // BC We knew CF // AB So BCFD is a parallelogram Then CF = BD = AD Connect AF, Since AD // CF ADCF is a parallelogram So CD = AF Because CF // AB
Prove: 1. CD = BC Because AD = DB, AE = EC Then DE // BC We knew CF // AB So BCFD is a parallelogram Then CF = BD = AD Connect AF, Since AD // CF ADCF is a parallelogram So CD = AF Because CF // AB So AF = BC
Prove: 1. CD = BC Because AD = DB, AE = EC Then DE // BC We knew CF // AB So BCFD is a parallelogram Then CF = BD = AD Connect AF, Since AD // CF ADCF is a parallelogram So CD = AF Because CF // AB So AF = BC Thus CD = BC, since AF = DC
Prove: 2. ΔBCD ~ ΔGBD Because FG // BC
Prove: 2. ΔBCD ~ ΔGBD Because FG // BC Then GB = CF, and GB = BD
Prove: 2. ΔBCD ~ ΔGBD Because FG // BC Then GB = CF, and GB = BD So ∠DGB = ∠EFC = ∠DBC
Prove: 2. ΔBCD ~ ΔGBD Because FG // BC Then GB = CF, and GB = BD So ∠DGB = ∠EFC = ∠DBC Because GB = BD, and We proved CD = BC in the first part
Prove: 2. ΔBCD ~ ΔGBD Because FG // BC Then GB = CF, and GB = BD So ∠DGB = ∠EFC = ∠DBC Because GB = BD, and We proved CD = BC in the first part So ∠DGB = ∠GDB = ∠DBC = ∠BDC
Prove: 2. ΔBCD ~ ΔGBD Because FG // BC Then GB = CF, and GB = BD So ∠DGB = ∠EFC = ∠DBC Because GB = BD, and We proved CD = BC in the first part So ∠DGB = ∠GDB = ∠DBC = ∠BDC So ΔBCD ~ ΔGBD
Citation "2012 College Entrance Examination: Math Exam." College Entrance Exams. ZhongGuo Jiao Yu Xin Wen Wang, 3 June 2012. Web. 22 Apr. 2013. <http://www.jyb.cn/gk/gkrdzt/2012gkstda/>