1 / 12

Chandra による SN1006 衝撃波面の詳細観測

Chandra による SN1006 衝撃波面の詳細観測. 馬場 彩、山崎 了、植野 優、小山 勝二 ( 京都大学 ). SN 1006 with ASCA. 1. Introduction. “How are cosmic rays accelerated up to TeV?”. Basic concept: Diffusive Shock Acceleration (DSA) (Bell 1978; Blandford & Ostriker 1978…). Koyama et al.(1995)

Download Presentation

Chandra による SN1006 衝撃波面の詳細観測

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ChandraによるSN1006衝撃波面の詳細観測 馬場 彩、山崎 了、植野 優、小山 勝二 (京都大学) SN 1006 with ASCA

  2. 1. Introduction “How are cosmic rays accelerated up to TeV?” Basic concept: Diffusive Shock Acceleration (DSA) (Bell 1978; Blandford & Ostriker 1978…) Koyama et al.(1995) Discovery of synchrotron X-rays from the shell of SN 1006 SN1006: type Ia d=1.8kpc 10´ Next problem: More realistic model “How do the non-thermal electrons distribute on the shock?” Spatial and spectral studies with Chandra

  3. 高空間分解能 • 位置分解能 ~ 0.5″! → 衝撃波前後面の詳細構造が分かる 2. 低エネルギーまで感度あり 0.3 keV – 10.0 keVに感度 (ACIS-S) → 酸素のラインも見ることが出来る (特に低温プラズマの診断に有利) Chandra ACIS-Sで観測 (68 ksec) 1.2. Chandraの特長

  4. 0.3 1 5 Energy (keV) outward = upstream 2.1. Image and spectrum inward = downstream thermal extended non-thermal sharp SN1006 NE shell How large are the scale length of non-thermal component? 0.3 – 2.0 keV 2.0 – 10.0 keV

  5. upstream downstream 2.2. Analyses method We want to know: the scale length of non-thermal component in outward = upstream inward = downstream 40 shock counts 20 wu wd 2.0 – 10.0 keV 0 20 0 40 arcsec

  6. 2.3. Fitting results 0.01pc! 10´´ = 0.1 pc 2 – 10 keV Upstream 0.04 pc 0.01 pc Downstream 0.2 pc 0.05 pc Mean value………………. Minimum value……….…..

  7. Kd ud Ku uu wd = wu = nbreak = 2.6x1017 Hz +0.7 -0.7 xEmaxc 3eB 4(Ku+Kd) us2 K = Emax Bd B dB > 6.4x106erg/G x ~ > 1 tacc = = 1010s 3.1. Discussion (1)the observed and derived parameters Derived parameters from DSA: Observed parameters: Emax , Bd 1. The wide band spectrum +0.04 -0.06 EmaxBd0.5 = 0.37 erg G0.5 2. The diffusion coefficient K uu = 4ud = us = 2600 km/s (Winkler & Long 1997) 3. The acceleration and loss tacc < tsync EmaxBd2 < 6.5x10-8 erg G2 tsync= 6.3x102Emax-1Bd-2

  8. -3 fromnbreak Emax ~ 30 TeV Bd ~ 30 mG xd < 1.3 fromtacc log (Bd/G) from Kd andx -6 13 14 log (Emax/eV) 3.2. Discussion (2)the Emax – Bd relation shock Bd ? Highly turbulent magnetic field! downstream e-

  9. Emax ~ 30 TeV Bd ~ 30 mG Bd < Bu < Bd Emax eBu 0.001 pc < rg = < 0.005 pc 1 4 3.3. Discussion (3)in upstream 7 mG < Bu < 30 mG The gyro radius in upstream rg: ~ wumin = 0.01 pc ! shock Conventional DSA cannot explain the result. Bu Bd the magnetic field in upstream nearly parallel to shock plane the new acceleration mechanism e.g. Surfing acceleration (Hoshino & Shimada 2002) downstream Further analyses of SN 1006 and other SNRs

  10. 4. Other SNRs (1) Young SNRs Cas A Kepler Tycho 0.06pc 0.04pc 0.01pc 0.007pc 0.02pc 0.02pc

  11. 4. Other SNRs(2) middle aged SNRs G347.3-0.5 RCW86 0.5pc 0.1pc 0.6pc 0.08pc

  12. 5. Summary • We resolved non-thermalemission • from thermal plasma in spatially and spectroscopically. 2. The non-thermal filaments have very small scale length! 3. The conventional DSA should be revised to explain the small scale length. the magnetic field parallel to shock plane in upstream? new acceleration mechanism? or 4. The analyses of other SNRs is important!

More Related