430 likes | 559 Views
In collaboration with René DAVID. Directeur de recherche émérite CNRS. Hassane ALLA. Professeur à l'UJF. MODELING. BY HYBRID PETRI NETS. état de la vanne. en fermeture. g. ouverte. b. d. en ouverture. a. fermée. temps. t1. t2. t3. t4. Discrete Event Systems. Motivation.
E N D
In collaboration with René DAVID Directeur de recherche émérite CNRS Hassane ALLA Professeur à l'UJF MODELING BY HYBRID PETRI NETS
état de la vanne en fermeture g ouverte b d en ouverture a fermée temps t1 t2 t3 t4 Discrete Event Systems
Motivation Objective : Systems DynamicAnalysis
t t Motivation (cont’d) Large numbers: continuous approximation may be convenient
Outline DISCRETE, CONTINUOUS and HYBRIDPETRI NETS TIMING IN DISCRETE & CONTINUOUS PETRI NETS AUTONOMOUS and TIMED HYBRID PETRI NETS APPLICATION EXAMPLES CONCLUSION
DISCRETE PETRI NETS CONTINUOUS PETRI NETS HYBRID PETRI NETS
P 1 T 3 P P 2 4 T 2 T 1 P 3 T 4 Firing of T1 P 1 T 3 P P 2 4 T 2 T 1 P 3 T 4 Discrete PN
T 2 T 3 T 2 Hybrid PN m 2 T 1 1 4 T 4 0 1 0 2 m 1
TIMING IN DISCRETE PETRI NETS & CONTINUOUS PETRI NETS
Machine M1 Machine M2 Buffer 1 Buffer 2 P1 1 T1 P3 2 P2 T2 P4 1 3 Timing in a Discrete PN
Tank 1 V2 = 2 liter/sec V1 = 3 liter/sec Pump Tank 2 Timing in a Continuous PN
1 1 Discrete System : Approximation P1 P1 T1 P3 d1= T1 2 V1= 2 P2 P2 75 T2 P4 d2= T2 V2=3 3 Continuous model Discrete model
P1 T1 V1=2 P2 75 T2 V2=3 = = ü v ( t ) V 2 1 1 ï pour t < 75 ý ï = = v ( t ) V 3 þ 2 2 = = ü v ( t ) V 2 1 1 ï pour t ³ 75 ý ï = = v ( t ) V 2 þ 2 1 Continuous System : Approximation m1 m2 m1(t)=(3-2)t=t 75 m2(t)=75-t t 0 0 75
Maximum Firing Speeds Depending on Time
Generalization The basic rules related to an autonomous continuous PN are verified The instantaneous firing speeds may be defined in various ways First example Second example
AUTONOMOUS HYBRID PETRI NETS
Influence of the Discrete Part on the Continuous Part
Influence of the Continuous Part on the Discrete Part
Transformation of Continuous Marking into Discrete Marking
Transformation of Discrete Marking into Continuous Marking
TIMED HYBRID PETRI NETS
Tank 1 Valve L V =2 liter/sec 4 V = 3 liter/sec 3 Pump Tank 2 Example of Hybrid PN
APPLICATION EXAMPLES
Electronic components assembly-test workshop (diodes and transistors) (Motorola in Toulouse – France) Performance evaluation of a production System Wafer 400-5000 Chips Chip
Electronic components assembly-test workshop (diodes and transistors) (Motorola in Toulouse – France) Furnace Test Cutting Molding Performance evaluation of a production System (cont’d) Wafer
Actuators System Sensors Communication Networks Controller Controlled system via Communication Networks • Use of the communication networks to carry out tasks of control • Not deformed reception of informations: (delays, flows capacities, losses) • Real time System : Temporal accuracy • Network Control System NECS Project
Communication networks Control device Process Controlled system via Communication Networks -Motivations • Open loop control Communication networks • Modeling of the networks • Messages: Continuousflows • Decisions of routing or emission: Discrete events • Networks communications can be represented by hybrid tools of modeling : hybrid Petri Nets
Natural sources Emitter1 Emitter2 Communication network valve valve buffer • Tank valve valve Receiver1 Receiver2 • Consumptions Modeling Tools • Water supply system:
V1 V2 Flow of messages V4 V4 Natural source 2 • Natural source 1 • t • t • T1 • T2 V1 V2 V2 V1 V3 V3 Transmittingsources • Tank • t • t buffer • T4 V4 V4 • T3 V3 V3 Receivingsources • Consumption 1 • Consumption 2 An analogy
Backbone of US Backbone of Europe Regional network National network Network IPbus Network IPbus Network IPring Communication Network: Network architectures Internet = Set of interconnected sub-network Selected reference model: TCP/IP
E1 Rt4 Rt1 R E2 Rt3 Rt2 E3 Congested network Networks architecture Network capacity?
Expiration of Tempo • Losses of data Tempo E R congestion window (Ko) cwnd = 1 Congestion Avoidance 22 acq Tempo Thres1 16 cwnd = 2 Thres2 Tempo acq 11 Slow start 8 cwnd = 4 4 acq 2 1 Number of transmission Resume of slow start Congestion control Algorithms of TCP: Slow start Congestion Avoidance
0+ 0+ V1 V2 V2 V1 R E1 Rt Cnl 1 Cnl 2 T’1 T1 T2 T’2 V1 T ”1 V T3 C A transmission line Case of transmission line merged in Internet environment
systems have been studied for a Continuous long time Modeling, analysis and control of have undergone DES major developments in recent decades In a need has emerged to consider systems which recent years are partially continuous and partially discrete CONTINUOUS Petri nets and HYBRID Petri nets can be used for modeling these systems Conclusion
Bibliography SURVEY REFERENCES H. Alla, R. David, Continuous and Hybrid Petri Nets, Journal of Circuits, Systems and Computers, Special Issue on Petri Nets, Vol 8 No 1, 1998 pp. 159-188. R. David, H. Alla, On Hybrid Petri Nets, Discrete Event Dynamic Systems, Theory and Applications, Kluwer Academic Publishers, 11, 9-40, 2001. R. David and H. Alla, Discrete, Continuous, and Hybrid Petri Nets, in preparation, to be published by Springer, Heidelberg, 2004. BIBLIOGRAPHY ON HYBRID PETRI NETS www.diee.unica.it/ ~aldo/bibliohpn.html by Alessandro Giua & Aldo Piccaluga, Dip. di Ingegneria Elettrica ed Elettronica, Università di Cagliari, Italy .