1 / 22

D. L. McAuslan, D. Korystov, and J. J. Longdell

D. L. McAuslan, D. Korystov, and J. J. Longdell Jack Dodd Centre for Photonics and Ultra-Cold Atoms, University of Otago, Dunedin, New Zealand. David McAuslan – QIP-REIDS2011. Coherent Spectroscopy of Rare-Earth-Ion Doped Whispering Gallery Mode Resonators. David McAuslan – QIP-REIDS2011.

Download Presentation

D. L. McAuslan, D. Korystov, and J. J. Longdell

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. D. L. McAuslan, D. Korystov, and J. J. Longdell Jack Dodd Centre for Photonics and Ultra-Cold Atoms, University of Otago, Dunedin, New Zealand. David McAuslan – QIP-REIDS2011 Coherent Spectroscopy of Rare-Earth-Ion Doped Whispering Gallery Mode Resonators David McAuslan – QIP-REIDS2011

  2. Whispering Gallery Modes (WGMs). Strong Coupling Regime of Cavity QED. Experiments. Atom-Cavity Coupling. Coherence Time. Population Lifetime. Spectral Hole Lifetime. Optical Bistability/Normal-Mode Splitting. David McAuslan – QIP-REIDS2011 Outline David McAuslan – QIP-REIDS2011

  3. Electric field confined to equator. High quality factor. Small mode volume. Ideal for strong coupling cavity QED. David McAuslan – QIP-REIDS2011 Whispering Gallery Modes [1] [1] S. Arnold et al., Opt. Lett. 28 (2003). David McAuslan – QIP-REIDS2011

  4. David McAuslan – QIP-REIDS2011 Whispering Gallery Modes [1] [4] [3] [2] [2] [3] [1] T. J. Kippenberg, PhD. Thesis (2004). [2] A. Schliesser et al., Nature Physics 4 (2008). [3] Y. Park et al., Nano Lett. 6 (2006). [4] J. Hofer et al., PRA 82 (2010). David McAuslan – QIP-REIDS2011

  5. κ – cavity decay rate: γ – atomic population decay rate: γh– atomic phase decay rate: g – coupling between atoms and cavity: David McAuslan – QIP-REIDS2011 Strong Coupling Regime David McAuslan – QIP-REIDS2011

  6. Critical atom number: Saturation photon number: N0<1, n0<1. “Good cavity” strong coupling regime: g > κ, γ, γh. “Bad cavity” strong coupling regime: κ > g >> γ, γh. David McAuslan – QIP-REIDS2011 Strong Coupling Regime David McAuslan – QIP-REIDS2011

  7. Reversible State Transfer Single Atom Detection David McAuslan – QIP-REIDS2011 Why Strong Coupling? D. L. McAuslan et al., Physical Review A 80, 062307 (2009) David McAuslan – QIP-REIDS2011

  8. Measure the properties of a Pr3+:Y2SiO5 resonator. Atom-cavity coupling. Coherence time. Population lifetime. Spectral hole lifetime. Calculate cavity QED parameters to determine viability of strong-coupling regime. David McAuslan – QIP-REIDS2011 Aim of Experiments David McAuslan – QIP-REIDS2011

  9. Resonator: 0.05% Pr3+:Y2SiO5. r = 1.95mm. Q = 2 x 106. Sample: 0.02% Pr3+:Y2SiO5. 5x5x5mm cube. David McAuslan – QIP-REIDS2011 Experimental Setup LO Probe D. L. McAuslan et al., ArXiv:1104.4150 (2011) D. L. McAuslan et al., ArXiv:1104.4150 (2011) David McAuslan – QIP-REIDS2011

  10. David McAuslan – QIP-REIDS2011 πPulse Length π = 0.32μs for Pin = 700μW D. L. McAuslan et al., ArXiv:1104.4150 (2011) D. L. McAuslan et al., ArXiv:1104.4150 (2011) David McAuslan – QIP-REIDS2011

  11. Rabi frequency: Atom-Cavity Coupling: Compare to g calculated from the theoretical mode volume (V = 5.40 x 10-13 m3 for r = 1.95mm): David McAuslan – QIP-REIDS2011 Atom-Cavity Coupling D. L. McAuslan et al., ArXiv:1104.4150 (2011) D. L. McAuslan et al., ArXiv:1104.4150 (2011) David McAuslan – QIP-REIDS2011

  12. David McAuslan – QIP-REIDS2011 Coherence Time • Through Resonator • Coupled into Resonator e-2τ/T2 e-2τ/T2 D. L. McAuslan et al., ArXiv:1104.4150 (2011) D. L. McAuslan et al., ArXiv:1104.4150 (2011) David McAuslan – QIP-REIDS2011

  13. David McAuslan – QIP-REIDS2011 Coherence Time • Through Resonator • Coupled into Resonator e-2τ/T2 e-2τ/T2 T2 = 30.8 μs T2 = 21.0 μs D. L. McAuslan et al., ArXiv:1104.4150 (2011) D. L. McAuslan et al., ArXiv:1104.4150 (2011) David McAuslan – QIP-REIDS2011

  14. Through Resonator Coupled into Resonator David McAuslan – QIP-REIDS2011 Population Lifetime e-Τ/T1 e-Τ/T1 D. L. McAuslan et al., ArXiv:1104.4150 (2011) D. L. McAuslan et al., ArXiv:1104.4150 (2011) David McAuslan – QIP-REIDS2011

  15. Through Resonator Coupled into Resonator David McAuslan – QIP-REIDS2011 Population Lifetime e-Τ/T1 e-Τ/T1 T1 = 205μs T1 = 187μs D. L. McAuslan et al., ArXiv:1104.4150 (2011) D. L. McAuslan et al., ArXiv:1104.4150 (2011) David McAuslan – QIP-REIDS2011

  16. David McAuslan – QIP-REIDS2011 Spectral Hole Lifetime D. L. McAuslan et al., ArXiv:1104.4150 (2011) David McAuslan – QIP-REIDS2011

  17. Optical bistability and normal-mode splitting studied by Ichimura and Goto in a Pr3+:Y2SiO5 Fabry-Perot resonator [1]. Theory modified for a WGM resonator. Fitting to experimental data gives: g = 2πx 2.2 kHz. David McAuslan – QIP-REIDS2011 Optical Bistability 800μW 400μW Sweep Sweep 200μW 100μW 80μW 40μW [1] K. Ichimura and H. Goto, PRA 74 (2006) David McAuslan – QIP-REIDS2011

  18. David McAuslan – QIP-REIDS2011 Cavity QED Parameters • This resonator: • κ = 2π x 138 MHz. • γ = 2π x 0.851 kHz. • γh= 2π x 2.34 kHz. • g = 2π x 1.73 kHz. • N0 = 2.15 x 105, n0 =0.166. • Need: • Smaller resonators. • Higher Q factors. • Different materials. David McAuslan – QIP-REIDS2011

  19. David McAuslan – QIP-REIDS2011 Smaller V • Single point diamond turning. • Crystalline resonators with R = 40 μm. • Possible to reduce V by 3 orders of magnitude. [1] [1] I. S. Grudinin et al., Opt. Commun. 265 (2006) David McAuslan – QIP-REIDS2011

  20. David McAuslan – QIP-REIDS2011 Higher Q • We have measured Q = 2 x 108 in Y2SiO5 resonators. • Q = 3 x 1011 in CaF2 [1]. • Bulk losses in Y2SiO5 measured using Fabry-Perot cavity [2]. • α≤ 7 x 10-4 cm-1. • Max Q ~ 3 x 108. • At least 2 orders of magnitude improvement possible. • Bulk losses should be lower in IR. [1] A. A. Savchenkov et al., Opt Exp. 15 (2007) [2] H. Goto et al., Opt. Exp. 18 (2010) David McAuslan – QIP-REIDS2011

  21. David McAuslan – QIP-REIDS2011 Materials • N0<1 for different materials. David McAuslan – QIP-REIDS2011

  22. Performed an investigation into strong coupling cavity QED with rare-earth-ion doped WGM resonators. Direct measurement of cavity QED parameters of a Pr3+:Y2SiO5 WGM resonator. g = 2π x 1.73 kHz. γ= 2π x 0.851 kHz. γh= 2π x 2.34 kHz. Observed optical bistability and normal-mode splitting in resonator. Achieving the strong coupling regime of cavity QED is feasible based on existing resonator technology. David McAuslan – QIP-REIDS2011 Conclusions

More Related