1 / 57

LUNG CANCER OMICS

LUNG CANCER OMICS. VLADIMIR LAZAR MD, PhD Director of IGR’s Genomic Centre and Integrated biology platform vladimir.lazar@igr.fr. 2 nd ,Quebec conference on Therapeutic Resistance in Cancer Montreal, November 6th, 2010. Cost in metastatic NSCLC. Lung cancer overview 170 000 cases in USA

fauna
Download Presentation

LUNG CANCER OMICS

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. LUNG CANCER OMICS VLADIMIR LAZAR MD, PhD Director of IGR’s Genomic Centre and Integrated biology platform vladimir.lazar@igr.fr 2nd ,Quebec conference on Therapeutic Resistance in Cancer Montreal, November 6th, 2010

  2. Cost in metastatic NSCLC • Lung cancer overview • 170 000 cases in USA • 380 000 cases in Europe • At diagnosis 70% are metastatic • Overal survival at 5 Years <15% Erlotinib >2 m. COST-EFFECTIVEMESS 20 18 Pemetrex. > 2 m. 16 Erlotinib 2 m. Cetux.or bev. >2 m. 14 Pemetrex 2 m. Erlotinib 2 m. 12 Bev./Cet 2 m. Pemetrex 2 m. Docetax. 2 m. 10 Overall survival (median) 8 Platinum + 3rd gen. 8–10 m. Platinum + 3rd gen. 8–10 m. Platinum + 3rd gen. 8–10 m. Platinum + 3rd gen. 8–10 m. Platinum + 3rd gen. >10 m. 6 Cisplatin ‘old fashion’6–8 m. 4 BSC 2–4 m. 2 0 70’s 80s 90s 2000 2005 2007-8 2013

  3. Improve therapy Patients with same diagnosis Other treatments Non responders Toxicity Responders with standard therapy Goals of tailoring therapy according to predictive markers Gandara R, et al. J Clin Oncol, 2007: Abst 7500

  4. 30 Classic Strategy for biopsies collection / analysis • 1 biopsy per patient, before treatment • Cohort responders non responders • Corelate data with end point and Tumor 10% • Noise linked to the wide interindividual variability • (genetic background, sexe, organ, tumor type….) • need of large sample size, >>100 • (e.g MINDACT Clinical trial >6,000 patients) • Not compatible with limited number of patient. • List of gene obtained instable, not able to predict clinical benefit. Genetic Variability 90% noise Histologic preparation Michiels S, et al. Lancet. 2005 - Prediction of cancer outcome with microarrays: a multiple random validation strategy. Michiels S, et al. Br. J. Cancer 2007 - Interpretation of Microarray Data

  5. Sotiriou NEJM 2009

  6. 31 IGR sequential Biopsies program « 2 biopsies , before/after treatment » Tumoral versus normal tissue • Avoid inter-individual variability • (same patient, same genetic background, same tumour type…) • Advantage dual-fluorescence labeling • (direct comparison) Drug effect on Tumor 85% • Preliminary studies • 5 couples of biopsies analyzed in duplicate & dye-swap. • SD of log of l’exp° « before » et « after » (SD1= 1,6) • SD of log of l’exp° « before/after »(SD2=0,4) • =>sample size needed to detect the same difference with « t-test » • «  usual» Strategy n= 86 • « Sequential Biopsies » Strategy n=5 • Tumor versus normal = individual studies noise

  7. Expression BEFORE short name=CD69 short name=CD69 1000000 1000000 100000 100000 10000 10000 1000 1000 P= 0.8654 100 P= 0.0012 100 No response Response Response No response Ratio of expression BEFORE/AFTER 10.0 Expression Ratio 1.0 P=7.5E-12 0.1 No response Response 32 Example IGR’s Team project Expression AFTER Mantle cell lymphoma Sequential Biopsies Proteasome inhibitor

  8. SOP pain, anxiety and risk management Radiologie-Interventionnelle team (Dr T De BAERE)

  9. FNA 18 gauges 23 gauges • HISTOLOGIC control ON CYTO • Lysis buffer (DNA, RNA Proteins) • Highcontent in tumoral cells in breast tumors, • metastatic lymph nodes,lymphomas • Possible cell suspension biopsies 18 gauges Control radio/echo • SNAP FROZEN VS RNA LATTER • HISTOLOGY CONTROL • RISK OF MIRROR ADJACENT BIOPSY • Variable % of tumoralcells • Need suplementary QC

  10. ANOVA Repondeur /NRepondeur (4 5 8 / 1 3 7) 114 genes, p10-10

  11. P4B + P4T Profils similaires, à la dynamique près (amplitude supérieure pour P4B).

  12. ANOVA Repondeur /NRepondeur (4 8 / 3 7) 474 genes, p10-10

  13. How does classyfy the signature the non evaluable patient?

  14. 6th PCRD Coordinator Pr Johan Hanson Karolinska Instituted IGR – Genomic workpackage Chemores : the first fully integrated Omics project in Lung cancerperformed with dual biopsies strategies T versus normal tissue

  15. Comparisons Each patient TUMOR VS normal Tissue,( certified by histology control>85%, unique quality) • Groups: • To compare • Group 1 vs 2 (prognostic + predictive) • Group 3 vs 4 (prognostic) • Interaction: (1-2) vs (3-4) = predictive biomarkers • To compare • Tumor versus normal in ADK and SCC (early diagnosis) • Individualized estimation of resistance and of sensitivity

  16. Lung cancer overview • 170 000 cases in USA • 380 000 cases in Europe • At diagnosis 70% are metastatic • Overal survival at 5 Years <15% • Early diagnosis ( compare T vs normal lung tissues) • Serum biomarkers –target secreted proteins • Enhancing sensitivity of imaging –target receptors • Predict efficacy of treatments • Populational studies (dissociate prognostic and predictive biomarkers • Individualized selection of treatment • Switch to integrative medicine (P4 medicine)

  17. Molecular data • DNA • CGH (comparative genomic hybridization): measures copy number. Agilent 250K array • Methylation array: measures gene silencing. (Tumor-suppressor genes are often silenced.) • Full sequencing of candidate genes (1,000 genes) • RNA • Exon expression array. Agilent 244K array. Average 8 exons/gene. • microRNA. Affects mRNA-protein translation. Agilent array~800miRNA. • Protein • LC/MS method

  18. Clinical data • N=123 patients • table(Relapse, Adj.chemo) Adj.chemo Relapse 0 1 0 39 36 1 22 26 • Pilot data: 4 subjects/group • Cisplatin + vinorelbin regimen

  19. Analyses of gene-expression data244 k exon array

  20. ANOVA 1 vs 2

  21. ANOVA 3 vs 4 P18_CHE_an34_244F_c2d_397.xls

  22. Interaction Chemo/Relapse

  23. Analyses of CGH data

  24. Analysis microRNA data

  25. ANOVA 2 groups 1 vs 2

  26. Path analysisOnly tumors - Interaction

  27. Building of algorithme relies on 3 steps 9 Complet genome profiling of the Tumor (metastasis) as compared to the original histological normal tissue Tumor Normal Cancer is a clonal disease Cancer is a polygenic disease Drivers are mutations

  28. 10 Second step Identifiction of all genes altered by The drugs, or interacting with drugs Understanding of the interaction drug-gene ( genes of resistance, targets, genes of sensitisation,

  29. 11-01-10 Baseline 10-03-10 After 2 cycles

  30. 11-01-10 Baseline 10-03-10 After 2 cycles

  31. 11-01-10 Baseline 10-03-10 After 2 cycles

  32. 11-01-10 Baseline 10-03-10 After 2 cycles

  33. 2 Male Caucasian,58Y, 2003, NSCLC, cT4,N0,M1 • 9 therapeutic linesCisplatin Gemzar TaxotereNavelbineTaxolCarboplatinMediastinal RadiotherapyIRESSA AlimtaTarceva(HKI 272 (included in clinical trial) (pan Her Inhibitor)

  34. 4 START HKI272 Adrenal node (C2) = 26 mm

  35. Adrenal node (C2) = 58 Disease Progression New sublclavious metastasis 7 21/11/08 : Progression Disease DECISION TO STOP HKI 272

  36. 2 • 9 therapeutic linesCisplatin (108)Gemzar (70)Taxotere (77)Navelbine (50)Taxol (82)Carboplatin (66)Mediastinal RadiotherapyIRESSA (66)Alimta (73)Tarceva(HKI 272 (included in clinical trial) (pan Her Inhibitor)

  37. 12

  38. 13 23/12/08 = • STOP HKI 272 • START Lapatinib +Xeloda + Thiothepa (introduced sequentially during 1 month)

  39. 16 01/02/10: Still on Lapatinib, Xeloda,Thiotepa Stable Disease !! Adrenal node (C2) = 62 mm

  40. 13 45 years Rhabdomyosarcoma 5 metastases

  41. 13

More Related