120 likes | 269 Views
XGC: Gyrokinetic Particle Simulation of Edge Plasma. CPES Team Physics and Applied Math Computational Science. CPES Team. Computational Science California Institute of Technology J. Cummings Lawrence Berkeley National Laboratory Shoshani Oak Ridge National Laboratory
E N D
XGC: Gyrokinetic Particle Simulation of Edge Plasma CPES Team Physics and Applied MathComputational Science
CPES Team Computational Science California Institute of Technology J. Cummings Lawrence Berkeley National Laboratory Shoshani Oak Ridge National Laboratory R. Barreto, S. Klasky, P. Worley Princeton Plasma Physics Laboratory S. Ethier, E. Feibush Rutgers M. Parashar, D. Silver University of California - Davis B. Ludäscher, N. Podhorszki University Tennessee - Knoxville M. Beck University of Utah S. Parker Physics and Applied Math New York University Chang, Greengard, Ku, Park, Strauss, Weitzner, Zorin Oak Ridge National Laboratory Schultz, D’Azevedo, Maingi Princeton Plasma Physics Laboratory Hahm, Lee, Stotler, Wang, Zweben Columbia University Adams, Keyes Lehigh University Bateman, Kritz, Pankin University of Colorado Parker, Chen University of California - Irvine Lin, Nishimura Massachusetts Institute of Technology Sugiyama, Greenwald Hinton Associates Hinton
Physics in tokamak plasma edge • Plasma turbulence • Turbulence suppression (H-mode) • Edge localized mode and ELM cycle • Density and temperature pedestal • Diverter and separatrix geometry • Plasma rotation • Neutral collision ITER (www.iter.org) Diverted magnetic field Edge turbulence in NSTX (@ 100,000 frames/s)
XGC development roadmap Buildup of pedestal along ion root by neutral ionization Full-f neoclassical ion root code(XGC-0) Full-f ion-electron electrostatic code(XGC-1) - Whole edge Neoclassical solution Turbulence solution Study L-H transition Multi-scale simulation of pedestal growth in H-mode XGC-MHD coupling for pedestal-ELM cycle Full-f electromagnetic code (XGC-2) Black: Achieved • Blue: In progress • Red: To be developed
XGC 1 code • Particle-in-cell code • 5-dimensional (3-D real space + 2-D velocity space) • Conserving plasma collisions (Monte Carlo) • Full-f ions, electrons, and neutrals • Gyrokinetic Poisson equation for neoclassical and turbulent electric field • PETSc library for Poisson solver • MPI for parallelization • Realistic magnetic geometry containing X-point • Particle source from neutral ionization
Peak performance of XGC1 on Jaguar • 131M ions and 131M electrons, 200K nodes • Peak performance with 2048 cores, using strong scaling results • Working with team members to increase peak performance to 18%
1.E+09 1.E+08 Speed (# of particle x step/s) 1.E+07 1.E+06 100 1,000 10,000 Number of Cores Scalability of XGC1 on Jaguar:Near linear scaling for strong, linear scaling for weak scaling XGC Strong Scaling : 131M ions and electrons, 200K grid XGC Weak Scaling : 50K ions and electrons/core 1.E+07 1.E+06 Speed (# of particle/s) 1.E+05 1.E+04 100 1,000 10,000 Number of Cores
Neoclassical potential and flow of edge plasma from XGC1 Electric potential Parallel flow and particle positions
XGC-MHD coupling plan Black: Developed • Red: To be developed
XGC-M3D code couplingCode coupling framework with Kepler-HPC End-to-end system 160p, M3D runs on 64P Monitoring routines here XGC on Cray XT3 40 Gb/s Data replication User monitoring Data archiving Data replication Post-processing Ubiquitous and transparent data access via logistical networking
M3D equilibrium and linear simulationsnew equilibrium from eqdsk, XGC profiles Linear perturbed poloidal magnetic flux, n = 9 Equilibrium poloidal magnetic flux Linear perturbed electrostatic potential
Contact Scott A. Klasky Lead, End-to-End Solutions Center for Computational Sciences (865) 241-9980 klasky@ornl.gov 12 Klasky_XGC_0711