1 / 74

Smno.agroekotek.fpub.agst2013

Bahan Kajian : MK.Manajemen Agroekosistem. AGROEKOSISTEM SAYURAN: Pengelolaan Tanah dan Pemupukan. Smno.agroekotek.fpub.agst2013. 1. Bertumpu pada unsur hara yang tersedia dalam tanah 2. Penambahan unsur hara melalui pemupukan dan praktek pengelolaan lainnya. PRODUKSI TANAMAN.

fawzi
Download Presentation

Smno.agroekotek.fpub.agst2013

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. BahanKajian: MK.ManajemenAgroekosistem AGROEKOSISTEM SAYURAN: Pengelolaan Tanah danPemupukan Smno.agroekotek.fpub.agst2013

  2. 1. Bertumpu pada unsur hara yang tersedia dalam tanah 2. Penambahan unsur hara melalui pemupukan dan praktek pengelolaan lainnya PRODUKSI TANAMAN Kebutuhan tanaman terhadap hara Kemampuan tanah menyediakan unsur hara sangat beragam dan berfluktuasi Pupuk Teknik Diagnosis/Pendugaan: 1. Identifikasi gejala defisiensi hara 2. Uji Tanah 3. Analisis jaringan tanaman Kemampuan tanah menyediakan hara bagi tanaman

  3. TEKNIK PENDUGAAN STATUS KESUBURAN TANAH Identifikasi Gejala Defisiensi Unsur Hara pada tanaman Analisis jaringan tanaman yg tumbuh pada tanah Uji Biologis: Ukuran tingkat kesuburan tanah adalah pertumbuhan tanaman atau mikroorganisme tertentu UJI TANAH SECARA KIMIA

  4. SIFAT OLAH TANAH Pengelolaan tanah untuk memperbaiki sifat olah tanah dan pemupukan saling berkaitan, tetapi prosesnya berbeda. Misalnya, kompos atau pupuk kandang dapat diaplikasikan ke tanah sebagai bahan pembenah-tanah untuk memperbaiki sifat-olah tanah; akan tetapi aplikasi bahan tersebut juga akan menambah sejumlah hara ke tanah (pemupukan). A manufactured fertilizer may be added to supplement soil fertility levels, but it will not improve a soil’s tilth. For optimum yields and quality, gardeners need to pay attention to both soil management for improving tilth and soil fertilization. Tilth is a term related to the suitability of a soil to support plant growth. Technically speaking, tilth is “the physical condition of soil as related to its ease of tillage, fitness of seedbed, and impedance to seeding emergence and root penetration”.

  5. Journal of Soil Science and Environmental Management Vol. 2(10), pp. 318–320, 25 October, 2011 Introductory trial on hybrid millet (Pennisetum glaucum L. R. Br.) at different locations of District Karak, KPK, Pakistan Inayatullah Khattak, Mohammad Aqeel Khattak and Shahida Naveed An experiment was conducted on farmers’ fields to study the yield performance of hybrid millet “Badshah” at various locations of District Karak during Kharif 2010. The experiment was conducted in 6 union councils at 18 different locations of District Karak representing various micro agro climatic zones of the area. Data on days to flowering, days to maturity, plant population/m2, plant height (cm) and grain yield kg/ha were recorded. The investigations revealed that locations significantly affected all the parameters at P = 0.05%.

  6. Soil Amendment or Fertilizer PEMBENAH TANAH atau PUPUK The term soil amendment refers to any material mixed into a soil. By law, soil amendments make no legal claims about nutrient content or other helpful (or harmful) properties. Compost and manure are common soil amendments used to improve soil tilth. They may also supply nominal amounts of plant nutrients. Some of the nutrient effect seen from adding soil amendments is likely due to their effect on soil microorganisms. The organic material in soil amendments is a food source that allows microorganisms to multiply. The larger numbers increase the conversion of nutrients already in the soil to plant usable forms. Mulch refers to a material placed on the soil surface. By law, the term fertilizer refers to a material that guarantees a minimum percentage of nutrients (at least the minimum percentage of nitrogen, phosphate, and potash). An organic fertilizer is derived from natural sources and guarantees the minimum percentages of nitrogen, phosphate, and potash.

  7. PEMBENAH TANAH = Soil Amendments In the vegetable garden, the routine addition of organic soil amendments such as compost will optimize potential yields and quality. The goal in soil management is to increase the organic content to 4-5%, over a period of years. Common amendments include compost, manure, compost made with manure, fall leaves, straw, and peat moss. Home compost has the advantage that the gardener controls what goes into the compost, reducing problems with salts, weed seeds, and plant diseases. Another method to add organic matter is to replant the fall garden with a green manure crop such as winter rye or Austrian peas. Some of these cover crops fix small amounts of nitrogen in their roots that is tilled into the soil for plant use.

  8. Pertumbuhan tanaman yg tidak normal dapat disebabkan oleh adanya defisiensi satu atau lebih unsur hara, gangguan dapat berupa gejala visual yang spesifik. GEJALA DEFISIENSI UNSUR HARA PADA TANAMAN Occurrence of symptoms: 1. Kegagalan pertumbuhan pd saat perkecambahan 2. Pertumbuhan tanaman sangat kerdil 3. Munculnya gejala spesifik pad daun, pd waktu tertentu 4. Internal abnormalities, misalnya penyumbatan jaringan pembuluh 5. Tertundanya kemasakan tanaman 6. Penurunan hasil tanaman 7. Kualitas tanaman: kandungan protein, minyak, pati, daya simpan 8. ….. Gejala defisiensi bersifat relatif, seringkali defisiensi satu unsur hara bersamaan dengan kelebihan unsur hara lainnya. Di lapangan tidak mudah membedakan gejala-gejala defisiensi. Tidak jarang gangguan hama dan penyakit menyerupai gejala defisiensi unsur hara mikro. Gejala dapat terjadi karena berbagai macam sebab

  9. On clayey soil, organic matter (over a period of years) glues the tiny soil particles together into larger aggregates, increasing pore space. This increases soil oxygen levels and improves soil drainage, which in-turn increases the rooting depth allowing roots to readily reach a larger supply of water and nutrients. On sandy soils, organic matter holds over ten times more water and nutrients than sand. Bahan organik juga memacu aktivitas mikroba tanah dan membantu menyembuhkan pemadatan tanah. Bagaimana Bahan Pembenah Organik Memperbaiki Tanah?

  10. . Journal of Soil Science and Environmental Management Vol. 2(6), pp. 167–174, June 2011 Effects of different sources of nitrogen on potato at Tigoni, Kenya Jane Muthoni and Jackson N. Kabira A field experiment was set up to investigate the effects of different sources of nitrogen on potato at Tigoni in Kenya. The treatments consisted of ten fertilizer materials and two potato Solanum tuberosum varieties, namely, ‘Tigoni’ and ‘Asante’. The experiment was conducted for two consecutive seasons: October, 2008 to February, 2009 (first season) and April, 2009 to August, 2009, (second season). The experiment was a factorial laid in randomized complete block design with three replications. The potato yields were high with variety ‘Tigoni’ giving an average of 81.0 tons/ha in the first season and 86.8 tons/ ha in the second season. Variety ‘Asante‘yielded an average of 59.5 tons/ha in the first season and 62.1 tons/ha in the second season. The fertilizer materials, the varieties, and the interaction between fertilizers and varieties were all significant (P = 0.05) in both seasons. The experiment need to be repeated on farmers’ fields where the masking effects of the residual fertilizers can be eliminated. In addition, the cost of different fertilizer combinations needs to be evaluated so as to make the most profitable recommendations to potato growers in Kenya.

  11. “Situasi dimana tanaman memerlukan tambahan unsur hara tertentu meskipun belum ada gejala defisiensi yang spesifik” Kandungan hara dalam tanaman berada di atas zone defisiensi, namun masih berada di bawah batas optimal untuk pertumbuhan dan produksi tanaman HIDDEN HUNGER = KELAPARAN TERSEMBUNYI Melacak hidden hunger Field trial Tissue test Plant analyses Feed value Morfologi Part analyses root absorption Soil tests air tanah, aerasi, suhu Optimum fisiologis Top yield Hidden hunger Optimum ekonomis Symptoms dosis pemupukan Hasil analisis tanaman berguna untuk menyusun program pemupukan musim tanam mendatang . Hasil uji tanah berguna untuk membantu mengeliminir / mengatasi problematik hara musim tanam sekarang Kedua cara ini harus digunakan dengan hati-hati, terutama dikaitkan dengan sejarah pengelolaan tanah pada masa yang lalu

  12. Journal of Soil Science and Environmental Management Vol. 2(12), pp. 393–403, 22 December, 2011 Carbon accumulation and aggregate stability in an Acrisol under different fallow management in Ghana G. N. N. Dowuona, E. T. Adjetey1, E. K. Nartey1, T. A. Adjadeh1, R. Heck Soil organic carbon (SOC) in relation to aggregate stability, plant biomass accumulation and other properties of a Ferric Acrisol under different fallow management practices was determined to ascertain their potential for sequestering carbon. Three minor season fallow treatments replicated four times were natural and burning (T1), natural and plough-in (T2), pigeon pea (T3), bare land (T4), cowpea (T5), mucuna (T6) and natural and fertilized cropped (T7).Inherent nutrient status of the soil was low. Generally, dry matter (DM) yield increased for all the treatments in the minor season of 2006 more than in 2005. A high DM yield for T3 resulted from the shrubby and semi-woody nature of pigeon pea.Moisture stress from low rainfall decrease DM yield in 2007. In 2005, SOC contents of the treatment plots were lower than the initial amount although, T3 produced relatively the highest SOC accumulation (20,293 ± 326 kg C ha-1). In 2006, the legume-amended treatments (T3, T5 and T6) had similar SOC contents as the control (T4); the lower SOC contents in the natural fallow plots confirmed the negative effect of burning, especially in T1. Soil OC accumulation was greater in 2007 than in 2006 (except for T4). Water dispersible silt fraction decreased with increasing SOC accumulation (r value = - 0.88**). Dispersion ratios, more related to SOC (R2 value of -0.95** in the natural fallows and - 0.76* in the legume fallows), generally decreased from an average of 0.88 in 2006 to 0.50 in 2008 emphasizing the positive role of aggregate stability in SOC accumulation.

  13. General application rates for compost or other organic soil amendments are based on the salt content of the materials and soil and on the depth to which it is cultivated into the soil. Ideally, cultivate the soil amendment into the top six to eight inches of the soil. On compacted/clayey soils, anything less can lead to a shallow rooting system with reduced plant growth, lower vigor, and lower stress tolerance. Table 1 gives standard application rate for compost. Compost made solely from plant residues (leaves and other yard wastes) is basically free of salt problems, and higher application rates are safe. APLIKASI KOMPOS

  14. . Journal of Soil Science and Environmental Management Vol. 2(11), pp. 375–383, 29 November, 2011   Effect of Rice Mill Wastes Application on Selected Soil Physical Properties and Maize Yield (Zea mays l.) On an Ultisol in Abakaliki Southeastern Nigeria Njoku C., Mbah, C.N. and Okonkwo, C. I. An experiment was carried out in 2008, 2009 and 2010 (residual) cropping season at Teaching and Research Farm of Faculty of Agriculture and Natural Resources Management, Ebonyi State University, Abakaliki to determine the long term effect of burnt and unburnt rice mill wastes application on soil physical properties and maize yield. The experiment was laid out in Randomized Complete Block Design (RCBD) with three replicates. Seven treatments were included in the study: burnt rice mill waste at 10 and 20 t ha-1(BW10) and (BW20), unburnt rice mill waste at 10 and 20 t ha-1(UW10) and (UW20), mixture of burnt + unburnt rice mill waste (1:1) at 10 and 20 t ha-1(BUW10) and (BUW20), and a control (C). The results showed that rice mill wastes significantly (P < 0.05) improved soil physical properties (hydraulic conductivity and aggregate stability) and maize yield, compared to control across the three cropping seasons. The order of increase in crop grain yield in 2008 and 2009 cropping seasons were BW20>BUW20> BUW10>UW20>BW10>UW10>C and BUW20>BUW10>BW20> UW20>BW10>UW10>C.  Control recorded the lowest value of crop grain yield (0.12 t ha-1) in 2010 cropping season. At rate of 20 t ha-1 BW, BUW and UW recorded highest maize grain yield of 4.18, 4.06 and 1.70 t ha-1 in 2008, 2009 and 2010 cropping seasons, respectively. Therefore, rice mill wastes at these rates studied (10 and 20 t ha-1) could be used as soil amendment since it improved soil physical properties and increased maize yield.

  15. PENGARUH MUSIM Kekurangan hara dalam tanah diperparah oleh kondisi cuaca yang abnormal, misalnya kekeringan tanah atau kelebihan air yg menggenang, atau suhu tanah yang tdk normal. Pengaruh temperatur thd kandungan N-P-K daun tomat Umur Dry matter (%) tanaman 12oC 20oC (hari) N P K N P K 36 3.27 0.15 2.12 4.92 0.38 4.23 50 4.11 0.37 3.11 4.78 0.44 4.40 60 4.62 0.35 1.70 6.05 0.47 3.12 110 4.40 0.43 4.95 4.15 0.62 4.20 Sumber: Zurbicki, 1960. Pada kondisi temperatur rendah, tanaman tomat menyerap lebih sedikit nitrogen, fosfat dan kalium.

  16. Table 1. Routine Application Rate for Compost 1 3 cubic yards (67 bushels) covers 1,000 square feet approximately 1 inch deep. 2 Cultivate compost into the top 6-8 inches of the soil. On compacted / clayey soils, anything less may result in a shallow rooting depth predisposing plants to reduced growth, low vigor and low stress tolerance. The 3-4” inch depth is shown as an illustration of how application rates need to adjust when the deep cultivate is not practiced. 3 Plant based composted are derived solely from plant materials (leaves, grass clippings, wood chips and other wards wastes). Use this application rate also for other compost known, by soil test, to be low in salts. 4 Use this application rate for any compost made with manure or biosolids unless the salt content is known, by soil test, to be low. Excessive salts are common in many commercially available products sold in Colorado.

  17. Compost, which includes manure or biosolids as a component, has a potential for high salts. Excessive salt levels are common in many commercially available products sold in Colorado. On compost made with manure or biosolids, application rate is limited unless a soil test on that batch of product shows a low salt level. An amendment with up to 10 dS/m (10 mmhos/cm) total salt is acceptable if incorporated six to eight inches deep in a low-salt garden soil (less than 1 dS/m or 1 mmhos/cm). Any amendment with a salt level above 10 dS/m (10 mmhos/cm) is questionable. Note: dS/m or mmhos/cm is the unit used to measure salt content. It measures the electrical conductivity of the soil APLIKASI KOMPOS

  18. PENGARUH stress AIR TANAH Stress air tanah mempengaruhi penyerapan unsur hara oleh tanaman jagung. Kandungan NPK daun jagung lebih rendah pada kondisi stress air tanah. Pemupukan dapat mereduksi efek stress air tanah • Pengaruh pemupukan N-P-K dan stress air tanah thd kadar NPK daun jagung • Dosis pupuk Kadar NPK • N P K No stress days Maximum stress • ……… kg/ha ……………. ………………… % N …...……………. • 0 78 47 2.0 1.5 • 78 47 2.9 2.2 • ………………… % P …...……………. • 179 0 47 0.26 0.12 • 78 47 0.32 0.18 • ………………… % K …...……………. • 179 39 0 1.1 0.7 • 179 39 93 1.6 1.2 • Sumber: Voss, 1970.

  19. Compost needs to be thoroughly mixed into the upper six to eight inches of the soil profile. Do not leave compost in chunks, as this will interfere with root growth and soil water movement. As the soil organic content builds in a garden soil, the application rate should be reduced to prevent ground water contamination issues. A soil test is suggested every four to six years to establish a base line on soil organic matter content. If using a green manure cover crop, till the cover crop in before it reaches four inches in height. In the vegetable garden do not plow in woody materials such as bark or wood chips. They may interfere with seedbed preparation and may result in soil nitrogen depletion. APLIKASI KOMPOS

  20. APLIKASI KOMPOS DAN PUPUK KANDANG Manure, compost made from manure, and bio-solids may be high in salts that will interfere with crop growth. Do not add more than one inch per season without conducting a soil test to evaluate potential salt build-up. Due to a health issue (E coli contamination), fresh manure additions should be made at least four months prior to the harvest of any edible crops. In other words, apply fresh manure only in the fall after crops are harvested. Fresh manure or unfinished compost products may be high in ammonia. Avoid application of products with an ammonia smell; they could burn roots and leaves. Manure and compost may be source of weed seeds.

  21. ANALISIS TANAMAN (Plant Analyses) Dua macam analisis tanaman yg lazim adalah: 1. Tissue test, biasanya dilakukan pada jaringan segar tanaman di lapangan 2. Total analyses, dilakukan di laboratorium Analisis tanaman didasarkan pada premise bahwa: “ Jumlah unsur hara tertentu dalam tanaman merupakan indikasi dari ketersediaan unsur hara tersebut dalam tanah”. Karena kekurangan unsur hara tertentu akan membatasi pertumbuhan tanaman, maka kemungkinan unsur hara lain dalam tanaman menunjukkan konsentrasi tinggi. Tingkat kritis (critical level) unsur hara telah berhasil ditemukan pada berbagai jenis tanaman. Tingkat kritis adalah kandungan (content) suatu unsur hara dalam tanaman, di bawah mana hasil tanaman atau pertumbuhannya menurun di bawah optimum. Misalnya tingkat kritis P daun jagung pada masa pembungaan adalah 0.3% P. Ternyata besarnya tingkat kritis ini juga dipengaruhi oleh keseimbangan unsur hara lain dalam tubuh tanaman

  22. TISSUE TEST Uji Jaringan Tanaman Dalam uji ini digunakan cairan sel dari jaringan tanaman segar untuk mengetahui jumlah unsur hara yg masih belum terasimilasi, seperti N, P, K, Mg dan Mn. Hasil uji ini dikategorikan menjadi Sangat Rendah, Rendah, Medium,atau Tinggi GENERAL METHOD 1. The Purdue Soil and Plant Test Kit: Bagian tanaman dihancurkan dan diekstraks dengan reagen khusus. Intensitas warna yang berkembang diabndingkan dengan standar 2. Metode Kertas Saring. Cairan sel dipindahkan ke dalam kertas saring, kemudian dilakukan uji unsur hara N, P, K dengan menggunakan reagen tertentu. PLANT PARTS TO BE TESTED Harus dipilih bagian tanaman yang dapt memberikan indikasi paling baik terhadap status hara tanaman.

  23. Laju Pelepasan Hara dari Kompos dan Rabuk Kandang Gardeners need to understand that the nutrient release from compost and manure is slow, taking years. Adding compost or manure to improve soil tilth is not the same as fertilizing. The typical nitrogen release rates from manure is only 30% to 50% the first year (fresh manure), 15% to 25% the second year, 7% to 12% the third year, 3% to 6% the fourth year, and so on. With compost and composted manure, the release rate is even slower, 5% to 25% the first year, 3% to 12% the second year and 1% to 6% the third year. Since the nitrogen percentage of compost and manure products is typically only 2% to 4%, the amount of actual nitrogen release to support crop growth is very small. For soil with 4% to 5% organic matter, the mineralization (release) of nitrogen from soil organic matter will likely be sufficient for crop growth. For soils with 2% to 3% organic matter, the mineralization of nitrogen from soil organic matter will not likely be sufficient for heavy feeding vegetable crops. Supplement with 0.1 pound nitrogen fertilizer per 100 square feet. For the typical garden soil with 1% organic matter or less, the mineralization of nitrogen for soil organic matter will be minimal. Add 0.2 pounds of nitrogen fertilizer per 100 square feet.

  24. WAKTU PENGUJIAN Tingkat kemasakan sangat penting dalam uji jaringan tanaman. Umumnya tanaman semusim mengalami perubahan status hara selama masa pertumbuhannya Umumnya periode kritis terjadi pada fase pembungaan atau antara pembungaan hingga awal pembuahan. Selama periode ini penggunaan unsur hara pada tingkat maksimum. Kandungan nitrat biasanya lebih tinggi pd pagi hari, sehingga uji jaringan tdk boleh pagi-pagi. Beberapa hal penting: 1. Hal yg ideal adalah mengikuti serapan hara selama musim pertumbuhan dg jalan uji lapangan sebanyak lima atau enam kali. Biasanya kandungan hara lebih tinggi pada awal musim pertumbuhan 2. Kebutuhan tanaman paling besar biasanya terjadi pd saat masa pembungaan dan awal pembentukan buah dan biji 3. Pembandingan tanaman di lapangan sangat berguna. Uji tanaman dari daerah defisien dibandingkan dg tanaman dari daerah normal 4. Ragam tanaman, jumlah sampel 10 - 15 tanaman

  25. PENGGUNAAN ANALISIS JARINGAN TANAMAN 1. Membantu menentukan kemampuan tanah untuk menyediakan unsur hara. Hasil uji jaringan ini dipadukan dengan hasil uji tanah dan sejarah pengelolaan lahan. 2. Membantu mengidentifikasi gejala defisiensi 3. Membantu menentukan pengaruh pemupukan thd suplai hara dlm tanaman. Hal ini sangat penting untuk mengukur pengaruh pupuk meskipun tidak ada respon hasil. Dalam banyak kasus, hara ppuk tidak dapat diserap tanaman karena penempatannya keliru, cuaca kering, pencucian, fiksasi oleh tanah, atau aerasi buruk 4. Mengkaji hubungan antara status hara tanaman dengan penampilan tanaman 5. Survei daerah yang luas 6. Menarik partisipasi banyak orang.

  26. Soil fertilization is the addition of soil nutrients to support crop growth. While some soil amendments add small amounts of nutrients, amending the soil to improve soil tilth is not the same as amending the soil to provide nutrients. Manufactured fertilizers are popular with gardeners because they are readily available, inexpensive, easy to apply, and generally provide a quick release of nutrients for plant growth. Application rates for any fertilizer depend on the content and the amount of nutrient to be applied. In products containing multiple nutrients, the application rate is always based on the nitrogen content. PEMUPUKAN

  27. Pemupukan Nitrogen Nitrogen is the nutrient needed in largest quantities by plants and the one most frequently applied as fertilizer. It is annually applied in the form of manufactured fertilizer, organic fertilizers, and/or organic soil amendments. Application rates are critical, because too much or too little directly impacts crop growth. The standard annual application rate for home vegetable gardens is 2 pounds actual nitrogen per 1,000 square feet (0.2 pound actual nitrogen per 100 square feet). When organic matter is supplied, adjust the rate accordingly to account for nitrogen released by the organic matter. Manufactured nitrogen fertilizer can be broadcast and watered in, or broadcast and tilled into the top few inches of soil. It can be banded 3-4” to the side of the seed or plant row. Do not place the fertilizer in the seed row or root injury will occur. Some fully soluble types are applied in the irrigation water. “Organic” nitrogen fertilizers are typically tilled in or some can be applied in irrigation water.

  28. Table 2. Standard Nitrogen Fertilizer Application Rates for Gardens

  29. Pupuk Dasar = Starter In setting out transplants, starter solutions often promote early growth. Because transplants have been hardened-off (growth slowed to prepare the plant for movement to the exposed, windy, outdoor environment), the nitrogen in the starter solution gives the signal to resume active growth. Since phosphorus is less available in cold soils, phosphate may also be helpful in spring and before soils have thoroughly warmed. A starter fertilizer is any water-soluble fertilizer added to the irrigation water. Common examples include MiracleGro, Peters, Schultz Plant Food, Fertilome Root Simulator and Plant Starter Solution, etc. They generally contain ammonium nitrate since it is readily usable by the plant. Some products claim that vitamins or hormones promote plant growth. These claims are not supported by research findings.

  30. Hasil uji tanah harus dikalibrasikan dengan respon tanaman thd penambahan unsur hara (pupuk) . Respon tanaman dapat diperoleh dari percobaan lapangan atau rumah kaca. Indeks kesuburan tanah = “relative sufficiency” yg dinyatakan sbg persentase dari jumlah yang diperlukan untuk mencapai hasil maksimum KALIBRASI UJI TANAH Indeks Kesuburan (%) Indeks Kesuburan (%) Sangt Rendah 0 - 50 Tinggi 110 - 200 Rendah 60-70 Sngt Tinggi 210 - 400 Medium 80-100 Ekstrem Tinggi > 410 Tingkat kritis = Indeks kesuburan 75 % Peluang respon pupuk S. Rdh Rndh Medium Tinggi Sgt Tinggi Tingkat kesuburan tanah

  31. 1. Interpretasi hasil uji tanah melibatkan evaluasi ekonomi terhadap hubungan antara nilai uji tanah dengan respon pupuk. 2. Potensial respon pupuk dipengaruhi oleh faktor-faktor tanah, agroklimat, dan pengelolaan oleh petani 3. Rekomendasi pemupukan nitrogen sangat dipengaruhi oleh tanaman musim sebelumnya dan sasaran hasil 4. Untuk sistem komersial, sasarannya adalah mempertahankan hara tanah pd tingkat untuk melestarikan “top profit” per hektar lahan. Unsur hara tdk boleh menjadi faktor pembatas selama pertumbuhan tanaman. REKOMENDASI PUPUK Hasil tanaman D C Respon hasil thd pemupulan Tgt pd potensial hasil tanaman B A: terendah; D: tertinggi A Dosis pupuk

  32. Nitrogen “Side Dressing” Plant need for nitrogen varies. Beans, peas, tomatoes, and vine crops (cucumbers, squash, pumpkins, and melons) are examples of vegetables with a lower need for nitrogen. High nitrogen promotes excessive growth of the plant at the expense of fruiting. Crops such as potatoes, corn, and cole crops (broccoli, cauliflower, cabbage, and kale) use large amounts of nitrogen and need supplemental applications during the growing season (referred to as side dressing). For example, home garden potatoes often show nitrogen deficiency from August into fall. Symptoms start as a yellowing of lower leaves and progress into a general browning and dieback of the vine. When nitrogen stress hits, potatoes become more susceptible to diseases, including early blight and verticillium wilt. [Table 3] Fertilizers commonly used in the home garden for side dressing include ammonium sulfate, ammonium nitrate, and water-soluble fertilizers such as MiracleGro, Peters, etc. Phosphate and potash fertilizers are best added in the spring or fall, when they can be cultivated into the soil.

  33. Table 3. Nitrogen Side Dressing of Vegetable Crops

  34. Bagian tanaman yg digunakan untuk Uji Jaringan Tanaman Tanaman Nitrogen Fosfor Kalium Jagung Main stem , Leaf midribs near ear Blade tissue, leaf midribs midrib near ear Kedelai - Petiole pd bagian atas tnm Petiole Biji-bijian Main stem Jar daun di dekat pusat tnm Sama dg Fosfor Kentang dan Main stem, Petiole pd bag bawah tnm Petiole Tomat Petiole Sumber: Ohlrogge, 1962.

  35. A soil test is the best method to determine the need for phosphate and potash. With a fertilizer containing nitrogen and phosphate and/or potash, the application rate is always based on the nitrogen percentage because nitrogen is most critical to plant growth. Phosphate and potash fertilizers are best applied in the spring or fall, when they can be tilled into the soil APLIKASI P DAN K

  36. INPERPRETASI TISSUE TEST & PLANT ANALYSES Interpretasi hasil uji dan analisis tanaman harus dikaitkan dengan proses fisiologi tanaman. Beberapa faktor penting yang harus dipertimbangkan adalah: 1. Performance dan vigor tanaman secara umum 2. Kandungan unsur hara lainnya dalam tanaman 3. Adanya gangguan hama dan penyakit 4. Kondisi tanah, seperti aerasi yg buruk, kemasaman tanah, suhu tanah 5. Kondisi air tanah, stress air , genangan air 6. Kondisi klimatik 7. Waktu dalam seharian: pagi, siang, sore, malam. 1. Umumnya kalau pada awal pertumbuhannya tanaman mempunyai kandungan N,P, atau K yang rendah hingga medium, maka hasil tanaman akan di bawah optimum 2. Pada saat pembungaan hasil uji medium hingga tinggi dianggap cukup untuk kebanyakan tanama n

  37. Analisis Total dilakukan pada sluruh tanaman atau bagian-bagian tanaman. Bahan tanaman dikeringkan, dihaluskan dan diabukan. Bahan abu tanaman kemudian diekstraks dengan reagen kimia. ANALISIS TOTAL HARA 1. Kalau kadar K daun bagian bawah lebih rendah dari kadar K daun bagian atas, maka tanaman defisiensi kalium. 2. Peningkatan hasil dg peningkatan kadar hara 3. Keseimbangan hara 4. Time of sampling: Kadar hara tanaman menurun mulai dari awal hingga akhir masa pertumbuhannya 5. Crop Logging: Penggunaan analisis tanaman dalam operasi produksi tanaman 6. A-Value Technique: Teknik Analisis Radio-kimiawi • Pemupukan N menurunkan kadar P dan K tanaman tebu umur 10 bulan • Dosis pupuk N (lb/A) Internode 8-10 : • Nitrogen (ppm) Fosfor (ppm) Kalium (ppm) • 0 229 131 1160 • 463 57 340 • Sumber: Burr, 1960.

  38. Ketersediaan P dalam tanah-tanah pertanian sangat beragam. Deficiencies are most likely to occur in new gardens where the organic matter content is low and in soils with a high pH (7.8 to 8.3). Excessive phosphorus fertilizer can aggravate iron and zinc deficiencies and increase soil salt content. Routine application of compost or manure will supply the phosphorus needs in most garden soils in Colorado. Where phosphorus levels are believed to be low, the standard application rate without a soil test is ¼ to 1-pound triple super phosphate (0-46-0) or ammonium phosphate (18-46-0) per 100 square feet Phosphorus

  39. Hasil tanaman jagung (Y) Y = 1.20 + 31.88 X r = 0.96 (Hanway, 1962) Kadar N daun jagung (X) Hasil tanaman jagung (Y) at tasseling (Loue, 1963) Kadar K daun jagung (X) Kadar K petiole Dosis pupuk K = 400 kg/ha 200 100 0 (Tyler et al., 1960) Kadar Ca atau Mg daun jagung (Y) (Loue, 1963) Ca Mg Kadar K daun jagung (X) Umur tanaman kentang

  40. UJI BIOLOGIS UJI LAPANGAN. Percobaan lapangan melibatkan berbagai perlakuan pemupukan pada sebidang lahan. Biasanya digunakan Rancangan Percobaan tertentu Ukuran petakan contoh tgt jenis tanaman dan jatak tanamnya UJI PETIK DI LAHAN PETANI Sepetak lahan petani diperlakukan dengan “pemupukan” yang direkomendasikan berdasarkan hasil uji tanah dan/atau analisis tanaman. UJI LABORATORIUN DAN RUMAH-KACA 1. Mitscherlich Pot Culture 2. Neubauer Seedling Method 3. Sunflower Pot Culture technique for Boron METODE MIKROBIOLOGIS 1. Sackett & Stewart Technique 2. Aspergillus Niger 3. Mehlich Cunninghamella-Plaque Method for Phosphorus

  41. Kandungan kalium dalam tanah beragam antar lokasi. Deficiencies occasionally occur in new gardens low in organic matter and in sandy soils low in organic matter. Excessive potash fertilizer can increase soil salt content. Aplikasi secara rutin kompos dan pupuk kandang akan mensuplai kebutuhan kalium bagi tanaman. Where potash levels are believed to be low, the standard application rate without a soil test is ¼ to ½ pound potassium chloride (0-0-60) or potassium sulfate (0-0-50) per 100 square feet. Potassium

  42. Pengelolaan Pemadatan Tanah Pada tanah berliat, pemadatan tanah merupakan masalah penting yang berpotensi membatasi pertumbuhan tanaman. Tanah mengalami pemadatan selama proses budidaya pertanian. Menginjak-injak tanah basah, mengolah tanah basah, dan pukulan air hujan merupakan gaya-gaya yang dapat memadatkan tanah. Berikut ini tindakan untuk meminimumkan efek pemadatan tanah: • Aplikasi bahan organik ke tanah-tanah liat. • Avoid cultivating or working a clayey soil when wet. To evaluate, squeeze a handful of soil. Then try to crumble it. If it will crumble, it can be worked. If it will not crumble but stays in mud balls, it is too wet to be worked. • Avoid cultivating other than to prepare a seed bed or till in organic matter and fertilizers. For weed control, use a mulch, hand removal, or shallow cultivation only. • Use a raised bed with established walkways, and avoid walking on the growing bed. • Mulsa di permukaan tanah sepanjang tahun, untuk meminimumkan gaya-gaya pemadatan tanah akibat air hujan dan irigasi semprot. Hal ini juga membantu mengendalikan gulma dan mengurangi penguapan air.

  43. UJI TANAH = SOIL TESTING Ketersediaan dan keseimbangan hara dalam tanah Analisis Laboratorium SAMPLING: Tanah & Tanaman Korelasi antara hasil analisis & respon tanaman Interpretasi & Rekomendasi Implementasi

  44. . Journal of Soil Science and Environmental Management Vol. 2(7), pp. 193–197, July 2011 Effects of cow-dung and rock phosphate on heavy metal content in soils and plants O. O.Awotoye, D. J. Oyedele and B. C. Anwadike Field trial was conducted with the view to determining the ideal rock phosphate (RP) and the level of cow dung fertilizer combination with respect to heavy metal contamination of soil and crops. Soils amended with Ogun rock phosphate (ORP) were subjected to 1-4 tha-1 of cow dung on which maize (Zea mays (L)﴿  and okra (Abelmuscus esculentum) were planted. The amended soils were found to be enriched with heavy metals (Pb, Zn, Cu and Cd) more than the unamended soil but were still within the tolerable level with the exception of Cd which had a high value of 5.30 mg g-1 above the critical value of 3mg g-1.  The application of RP in combination with various levels of cow dung elevated the Pb, Zn and Cu content in the tissue of maize relative to the control. The Zn and Pb content of okra were not affected except for Cu and As in soil amended with RP and various levels of cow dung relative to the control. Transfer factor (TF) was higher in the treatment with RP supplemented with 2 t ha-1 of cow dung particularly for Pb and Zn for both crops relative to other treatments. Except for Cu and Zn, increasing the level of cow dung while RP did not increase the TF value of the heavy metals to the crops.

  45. SOIL SAMPLING Contoh Tanah representatif : 1. Terdiri 10-20 subsample dari zone perakaran: 0-20 cm 2. Sebidang lahan yg seragam slope, drainage, warna, dan sejarah pemupukannya 3. Area non-representatif: fence row, manure pile 4. Informasi pelengkap: petani, nomor lapangan, tanaman, praktek pemupukan 5. Waktu sampling 6. Sampel komposit: 500 g, ditumbuk, diayak 2 mm

  46. TUJUAN UJI TANAH 1. Untuk mempertahankan status kesuburan sebidang lahan 2. Untuk meramalkan / menduga respon kapur dan pupuk yg menguntungkan 3. Untuk mendapatkan landasan bagi rekomendasi jumlah kapur dan pupuk 4. Untuk mengevaluasi status kesuburan tanah di suatu wilayah

  47. SOIL TEST LEVEL Sumber Unsur Hara Sgt Tinggi Tinggi Medium Rendah Sgt Rendah Tanah Pupuk Tanah Pupuk Tanah Pupuk Tanah Pupuk Tanah Pupuk Unsur hara yg tersedia dari dlm tanah Unsur hara yg diperlukan dari pupuk

  48. . Journal of Soil Science and Environmental Management Vol. 3(4), pp. 91–96, April 2012 Assessment of soil quality improvement under Teak and Albizia Ziblim Abukari Imoro*, Damian Tom-Dery and Kingsley Arnold Kwadwo This study was conducted to assess the quality of soil in terms of soil nutrients and other physico-chemical properties under Tectona grandis and Albizia lebbeck plantations.Systematic sampling was used to collect soil samples diagonally at eight spots in each plantation and their adjacent non-tree fields as controls. The samples were collected from soil depth of 0 to 20 cm in both plantations and controls and analyzed for pH, % of Organic carbon (O-C), % of Nitrogen (N), available Phosphorus (P) and Bulk density (Db). The study revealed that the mean levels of N, O-C and P under the T. grandis plantation were higher than its control plot. However, there was no significant difference in the level of N except for the O-C and P. Also, the pH and Db under the T. grandis were lower than its control plot but there was no significant difference between them. There was significant difference in the levels of N, O-C and P under the A. lebbeck plantation and its control plot. The N, O-C and P were higher under the A. lebbeck plantation compared to its control plot. The pH and Db were lower under the A. lebbeck plantation compared to its control plot. However, the differences were not significant. In general, A. lebbeck added more N and O-C to the soil compared to T. grandis. Also, the T. grandis added more P to the soil when compared to the A. lebbeck; however, the difference was not significant. It is therefore, recommended that A. lebbeck and T. grandis should be used for agro forestry practices particularly, where the soil needs some level of improvement in nitrogen and phosphorus respectively.

  49. UJI TANAH SAMPLING THE SOIL 1. Contoh tanah harus dapat mewakili kondisi daerah / lahan 2. Seringkali digunakan contoh tanah komposit 3. Peralatan sampling tanah 4. Area sampling: satu contoh mewakili liasan lahan tertentu DEPTH OF SAMPLING 1. Untuk tanah-tanah pertanian, kedalaman sampling 15 - 30 cm 2. Kedalaman ini biasanya merupakan lapisan olah tanah 3. Untuk keperluan deskripsi profil tanah, sampling dilakukan untuk setiap horison tanah TIME OF SAMPLING 1. Sampling dapat dilakukan setiap saat asalkan kondisi tanah memungkinkan 2. Rekomendasi umum adalah melakukan uji tanah setiap tiga tahun 3. Sampling tanah dapat dilakukan pada saat tanaman sedang tumbuh ANALYZING THE SOILS 1. Kation: NH4+, K+, Ca++, Mg++ 6. Belerang 2. Fosfor 7. Sifat Fisika Tanah 3. Unsur mikro 8. …... 4. N dan Bahan organik 5. Kemasaman tanah dan kebutuhan kapur

  50. Masalah penting dalam menginterpretasikan hasil uji tanah adalah kaitannya dengan “pemupukan” yang diperlukan. Beberapa faktor yg harus diperhatikan adalah: 1. Karakteristik tanah 2. Hasil yang diharapkan 3. Tindakan pengelolaan 4. Kondisi agroklimat INTERPRETASI SOIL TEST Konsep hasil relatif (% hasil) didasarkan atas idea bahwa hasil yang diharapkan (yg dinyatakan sebagai persentasi hasil maksimum) diduga dari hasil uji tanah P dan K. Sejumlah pupuk perlu ditambahkan untuk mencapai hasil tanaman hingga 95% hasil maksimum. Kelemahan konsep ini adalah kalau ada efek interaksi antar unsur hara. Hasil Penelitian Barber (dari Purdue University) disajikan berikut: Populasi tanaman jagung dan respon pupuk Populasi jagung (tnm/A) Respon jagung (bu/A) thd pemupukan : Dosis 100 lb P2O5 Dosis 200 lb K2O 15.700 2 21 24.500 22 39 Sumber: Barber, 19…

More Related