1 / 38

E- ELT’s View of Stellar Environments

AO4ELT3 CONFERENCE. FLORENCE, ITALY, 26-31 MAY 2013. E- ELT’s View of Stellar Environments. Gaël Chauvin - IPAG/CNRS - Institute of Planetology & Astrophysics of Grenoble/France In Collaboration with ESO-PST,

fayola
Download Presentation

E- ELT’s View of Stellar Environments

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. AO4ELT3 CONFERENCE. FLORENCE, ITALY, 26-31 MAY 2013 E-ELT’sViewof StellarEnvironments Gaël Chauvin - IPAG/CNRS - Institute of Planetology & Astrophysics of Grenoble/France In Collaboration with ESO-PST, and E-ELT CAM, IFU, MIDIR, MOS, HIRES & PCS consortium

  2. Outline E-ELT’sView of StellarEnvironments • I- The E-ELT project • Telescope, Discovery Window, Other Projects • Instrumentation Road Map • II- Stellar Environments • Disks • Exoplanets • Evolved Stars

  3. The E-ELT Project The Telescope • 40-m class telescope: largestoptical-infraredtelescope in the world. • (GMT = 25m; TMT = 30m) • Segmentedprimarymirror. • Adaptive opticsassistedtelescope. • Diffraction limitedperformance: • 12mas@K-band • Wide field of view: 7arcmin. • Mid-latitude site (Amazones/Chile). • Fastinstrument changes. • VLT level of operationsefficiency.

  4. The E-ELT Project E-ELT & othercompetitiveprojects • Discoveriesby opening a new parameter space • Increased Sensitivity • Spatial resolution (10 mas scale) 50m2 400m2 600m2 1200m2 (JWST: 25m2) 2µm 50mas18mas14mas 10mas (JWST: 68mas)

  5. The E-ELT Project Timeline: current/future missions 2012 20142016 201820202022 202420262028 Ground: Harps N/S, SOPHIE, NaCo, VISIR, CRIRES, WASP… Space: Spitzer, Herschel, Kepler, CoRoT - VLT & VLTI 2nd& 3rd generation PRIMA, K-MOS, SPHERE, MUSE, ESPRESSO, GRAVITY… - ALMA(ACA) - GAIA - Cheops - TESS - SKA - JWST - EChO/PLATO/FINESS? - TMT - GMT - E-ELT

  6. The E-ELT Project Instrument Roadmap

  7. The E-ELT Project Instrument Roadmap • 1st Light Instruments SCAO: single-conjugated AO MCAO: Multi-Conjugated-AO LTAO: Laser-Tomographic AO MOAO: Multi-Object AO XAO: Extreme-AO

  8. The E-ELT Project Instrument Roadmap • 2nd Pool Instruments SCAO: single-conjugated AO MCAO: Multi-Conjugated-AO LTAO: Laser-Tomographic AO MOAO: Multi-Object AO XAO: Extreme-AO

  9. The E-ELT Project Instrument Roadmap • XAO Instrument SCAO: single-conjugated AO MCAO: Multi-Conjugated-AO LTAO: Laser-Tomographic AO MOAO: Multi-Object AO XAO: Extreme-AO

  10. The E-ELT Project Instrument Roadmap • Various AO Flavors SCAO: single-conjugated AO MCAO: Multi-Conjugated-AO LTAO: Laser-Tomographic AO MOAO: Multi-Object AO XAO: Extreme-AO

  11. The E-ELT Project Instrument Roadmap • Science Priority / StellarEnvironments Low Medium High

  12. Outline E-ELT’sView of StellarEnvironments • I- The E-ELT project • Telescope, Discovery Window, Other Projects • Instrumentation Road Map • II- Stellar Environments • Disks • Exoplanets • Evolved Stars

  13. StellarEnvironments 1/ CircumstellarDisks Artist’sView ESO-PR-0942

  14. 1/ Disks Key Scientific Questions • . Star/disk Evolution • Accretion, photo-evaporation, • Jets & Winds • Magnetic Fields • . Disk Structure & Dynamics (Gas & Dust) • . Chemistry: Water & Organics • in Planet-Forming Zones • . Planetary Formation • Initial conditions • . Planets/Disk interactions Fomalhaut ALMA/HST Bowler et al. 12

  15. 1/ Disks ProbingPlanet-formingRegions snow line 1 Lsun @100 pc Distance 0.01 0.1 1.0 10.0 100.0 [AU] Temperature 3000 1000 300 100 30 [K] Time 0.4 days 2 weeks 1 yr 30 yr 1000 yr E-ELT : 10 mas x 100pc = 1 AU E-MIDIR VLT/CRIRES E-IFU, E-HIRES ALMA

  16. 1/ Disks Star – disk interactions Co-rotation radius Magnetospheric radius snow line dust sublimation 1 Lsun @100 pc crystallization Distance 0.01 0.1 1.0 10.0 100.0 [AU] Temperature 3000 1000 300 100 30 [K] Time 0.4 days 2 weeks 1 yr 30 yr 1000 yr E-ELT : 10 mas x 0.01 x 100pc = 0.01 AU Spectro-astrometry E-MIDIR VLT/CRIRES E-IFU, E-HIRES ALMA

  17. 1/ Disks Star – disk interactions • Star/Disk evolution under the microscope… • Geometry of Accretion Channels • Inner Disk Properties (Warp, asymmetries…) • Role of Magnetic Fields (Config., Reconnection) • Jet L aunching Zone, • Stellar & Disk Winds E-ELT :10 mas x 0.01 x 100pc = 0.01 AU = 2 Ro MHD star – disk simulations E-IFU, E-HIRES & E-MIDIR R/Ro Zanni & Ferreira 09

  18. 1/ Disks Gas Dynamics in planet-forming zones Proto-planetary disk of SR21 (Ophiucus, 160pc, 1 Myr) Gap at 18 AU (sub-mm continuum emission Brown e al. 07) • E-ELT-MIDIR simulations of 12CO line emission at 4.7µm of SR21. • Left: Continuum subtracted and velocity channel co-added • Right: Velocity map with a resolving power of 100 000 (3 km/s) 32 AU E-MIDIR

  19. 1/ Disks Gas Dynamics in planet-forming zones • Water & Organics • Distribution and Dynamics • Disk cooling & Planetesimals formation • Organic/Prebiotic chemistry • (CH4, C2H2, HCN…) • Isotopic Fractionation • Transfer to Terrestrial Planets . Keck-NIRSPEC . high HRS (R = 25 000) in L-band. . Detection of H20 and OH radicals MIR lines . Hot (800K) water from the inner AUs E-MIDIR DR Tau, AS 205 N; Salyk et al. 08

  20. 1/ Disks Observing the DustyDisk Structures Asymmetries/Spirals in proto-planetary disks • E-MIDIR simulations of high-contrast imaging at 10 µm. • Jupiter footprint at 20 AU (@100pc) from G-star, • Gap detection at a few mJy/as2 • at 0.1-0.2” (10 – 20 AU) • ELT-MIR very competitive with • JWST E-MIDIR

  21. 1/ Disks Observing the DustyDisk Structures Asymmetries/Spirals in proto-planetary disks • E-MIDIR simulations of high-contrast imaging at 10 µm. • Jupiter footprint at 20 AU (@100pc) from G-star, • Gap detection at a few mJy/as2 • at 0.1-0.2” (10 – 20 AU) • ELT-MIR very competitive with • JWST E-MIDIR

  22. 1/ Disks Observing the DustyDisk Structures Asymmetries/Spirals in proto-planetary disks • E-MIDIR simulations of high-contrast imaging at 10 µm. • Jupiter footprint at 20 AU (@100pc) from G-star, • Gap detection at a few mJy/as2 • at 0.1-0.2” (10 – 20 AU) • ELT-MIR very competitive with • JWST E-MIDIR

  23. 1/ Disks Observing the DustyDisk Structures Asymmetries/Spirals in proto-planetary disks • E-MIDIR simulations of high-contrast imaging at 10 µm. • Jupiter footprint at 20 AU (@100pc) from G-star, • Gap detection at a few mJy/as2 • at 0.1-0.2” (10 – 20 AU) • ELT-MIR very competitive with • JWST E-MIDIR

  24. StellarEnvironments 2/ Exoplanets Artist’sView ESO-PR-1106

  25. 2/ Exoplanets Key Scientific Questions . Architecture of Exoplanetary Systems? . Formation & Evolution Processes . How does it depend on the Host properties? (Mass, Age, Composition…) . How frequent are the Telluric planets in the HZ? . Physics & Atmosphere of Exoplanets? (Telluric & Giant) . Bio-Signatures Discovery & Conditions favorable for Life?

  26. 2/ Exoplanets Exploration of Telluric Planets • Expected planet population detected by Doppler spectroscopy with: • HARPS on the ESO 3.6-metre (precision 1 ms−1), Observed(Mayor et al. 11) Predicted(Mordasini et al. 09) corrected observed

  27. 2/ Exoplanets Exploration of Telluric Planets • Expected planet population detected by Doppler spectroscopy with: • HARPS on the ESO 3.6-metre (precision 1 ms−1; left), • ESPRESSO on the VLT(precision 10 cms−1; middle) • and HIRES on the E-ELT(precision 1 cms−1; right). • > HIRES, required to detect Earth-like planets in HZ of solar-type stars E-HIRES

  28. 2/ Exoplanets TwinEarthDiscovery • Simulations: 1.8 MEarthExo-Earth in HZ (P=145 days) • around a bright and low-activity K1V star. • RV precision: 2cm/s.Limitations: instr. noise, stellar oscillations, granulation and activity. • Detailed observing strategy: • 3 meas./night, every 3 nights over 8 months • Periodogram: 3σdetection (red) E-HIRES

  29. 2/ Exoplanets Planetary Atmospheres • Reflected, Transmitted or Emitted light of Exoplanets • Strongly or non-strongly irradiated planets • Physics of Planetary Atmospheres (Giant, Exo-Neptunes to Super-Earths) • - Geometric Albedos • - Chemical Composition • (H20, CH4, CO, CO2, NH3…) • - Atmosphere’s Dynamics • . Inversion, • . Vertical Mixing, • . Circulation, • . Evaporation, • Imprints of Formation • Mechanisms? Knutson et al. 09 No Thermal Inversion Thermal inversion E-HIRES, E-MIDIR, E-PCS Spitzer

  30. 2/ Exoplanets Imaging Planetary Systems • Physics of Giant Planets (down to Super-Earths) • Observables: Luminosity, Teff& Gravity • Atmospheric properties • Orbitalproperties: a, e, i, • Complementarity RV, Astr… • > Access Dynamical Mass Bpic; Lagrange et al. 10 HR8799; Marois et al. 10 E-IFU, E-MIDIR, E-PCS

  31. 2/ Exoplanets Imaging Planetary Systems • Physics of Giant Planets (down to Super-Earths) • Observables: Luminosity, Teff& Gravity • Atmospheric properties • Orbitalproperties: a, e, i, • Complementarity RV, Astr… • > Access Dynamical Mass SPHERE E-IFU/MIDIR GAIA E-IFU, E-MIDIR, E-PCS E-PCS Mesa et al. 11 Kasper et al. 10 Lattanzi & Sozzetti 10

  32. 2/ Exoplanets Imaging Planetary Systems • Physics of Giant Planets (down to Super-Earths) • Observables: Luminosity, Teff& Gravity • Atmospheric properties • Orbitalproperties: a, e, i, • Complementarity RV, Astr… • > Access Dynamical Mass • Formation/Evolution Theories • L – Mass Relation • Gas Accretion Phase Mordasini et al. 12 No AccretionShock AccretionShock E-IFU, E-MIDIR, E-PCS

  33. 2/ Exoplanets Imaging Planetary Systems • Physics of Giant Planets (down to Super-Earths) • Observables: Luminosity, Teff& Gravity • Atmospheric properties • Orbitalproperties: a, e, i, • Complementarity RV, Astr… • > Access Dynamical Mass • Formation/Evolution Theories • L – Mass Relation • Gas Accretion Phase • Planetary System Architecture • Dynamical stability • Planet-disk interactions E-IFU, E-MIDIR, E-PCS Bpic b; ESO PR 0842

  34. StellarEnvironments 3/ Evolved Stars Eta Car (HST/WFPC2) N. Smith/NASA VLT/NaCo (L’, Bra, Pfg) Chesneau et al. 08 1’’

  35. 3/ Evolved stars • Environments • Disks, Outflows and Shocks Structure & Physical conditions • (Excitation, kinematics, density , temperature). • Interacting binary systems: cataclysmic variables and symbiotic systems • Archeology of Planetary systems • > Photosphericabundances of polluted white dwarfs • > Fe, Si, Ca, C , O, Mg abundances • Frequency of terrestrial planet building • Bulk chemistry of solid planetary bodies • Mass constraints for exoplanetary • building blocks • Frequency of water-rich exo-asteroids • Constraints on habitable environments Farihi et al. 2010

  36. Conclusions • Stellar environments under the Microscope • > Unique Spatial resolution & sensitivity • > Offering a versatile instrumentation • (wavelengths coverage, modes, spatial/spectral resolution…) • > Will count on new discoveries (ALMA, SPHERE, GPI, GAIA, TESS...) • > Mostly aimed at Characterizing , but not only… • Incredible Machine for Disks, Exoplanets & Evolved stars • > Star/Disk Evolution Processes • > Disk Structure, Composition & Chemistry (Water & Organics) • > Gas/Dust components in planet-forming Regions • > Telluric and Giant Planets Characterization • (frequency, physics, atmosphere & formation) • > Twin Earth in RV & Imaging Super-Earths • > Conditions favorable for Life

  37. 1/ Disks Star – disk interactions • Star/Disk evolution under the microscope… • Geometry of Accretion Channels • Inner Disk Properties (Warp, asymmetries…) • Role of Magnetic Fields (Config., Reconnection) • Jet L aunching Zone, • Stellar & Disk Winds E-ELT :10 mas x 0.01 x 100pc = 0.01 AU = 2 Ro E-IFU, E-HIRES & E-MIDIR . VLT/CRIRES, CO emission linesat 4.7µm (< 2 AU) AS 205 N, Pontopiddan et al. 11

More Related