380 likes | 503 Views
AO4ELT3 CONFERENCE. FLORENCE, ITALY, 26-31 MAY 2013. E- ELT’s View of Stellar Environments. Gaël Chauvin - IPAG/CNRS - Institute of Planetology & Astrophysics of Grenoble/France In Collaboration with ESO-PST,
E N D
AO4ELT3 CONFERENCE. FLORENCE, ITALY, 26-31 MAY 2013 E-ELT’sViewof StellarEnvironments Gaël Chauvin - IPAG/CNRS - Institute of Planetology & Astrophysics of Grenoble/France In Collaboration with ESO-PST, and E-ELT CAM, IFU, MIDIR, MOS, HIRES & PCS consortium
Outline E-ELT’sView of StellarEnvironments • I- The E-ELT project • Telescope, Discovery Window, Other Projects • Instrumentation Road Map • II- Stellar Environments • Disks • Exoplanets • Evolved Stars
The E-ELT Project The Telescope • 40-m class telescope: largestoptical-infraredtelescope in the world. • (GMT = 25m; TMT = 30m) • Segmentedprimarymirror. • Adaptive opticsassistedtelescope. • Diffraction limitedperformance: • 12mas@K-band • Wide field of view: 7arcmin. • Mid-latitude site (Amazones/Chile). • Fastinstrument changes. • VLT level of operationsefficiency.
The E-ELT Project E-ELT & othercompetitiveprojects • Discoveriesby opening a new parameter space • Increased Sensitivity • Spatial resolution (10 mas scale) 50m2 400m2 600m2 1200m2 (JWST: 25m2) 2µm 50mas18mas14mas 10mas (JWST: 68mas)
The E-ELT Project Timeline: current/future missions 2012 20142016 201820202022 202420262028 Ground: Harps N/S, SOPHIE, NaCo, VISIR, CRIRES, WASP… Space: Spitzer, Herschel, Kepler, CoRoT - VLT & VLTI 2nd& 3rd generation PRIMA, K-MOS, SPHERE, MUSE, ESPRESSO, GRAVITY… - ALMA(ACA) - GAIA - Cheops - TESS - SKA - JWST - EChO/PLATO/FINESS? - TMT - GMT - E-ELT
The E-ELT Project Instrument Roadmap
The E-ELT Project Instrument Roadmap • 1st Light Instruments SCAO: single-conjugated AO MCAO: Multi-Conjugated-AO LTAO: Laser-Tomographic AO MOAO: Multi-Object AO XAO: Extreme-AO
The E-ELT Project Instrument Roadmap • 2nd Pool Instruments SCAO: single-conjugated AO MCAO: Multi-Conjugated-AO LTAO: Laser-Tomographic AO MOAO: Multi-Object AO XAO: Extreme-AO
The E-ELT Project Instrument Roadmap • XAO Instrument SCAO: single-conjugated AO MCAO: Multi-Conjugated-AO LTAO: Laser-Tomographic AO MOAO: Multi-Object AO XAO: Extreme-AO
The E-ELT Project Instrument Roadmap • Various AO Flavors SCAO: single-conjugated AO MCAO: Multi-Conjugated-AO LTAO: Laser-Tomographic AO MOAO: Multi-Object AO XAO: Extreme-AO
The E-ELT Project Instrument Roadmap • Science Priority / StellarEnvironments Low Medium High
Outline E-ELT’sView of StellarEnvironments • I- The E-ELT project • Telescope, Discovery Window, Other Projects • Instrumentation Road Map • II- Stellar Environments • Disks • Exoplanets • Evolved Stars
StellarEnvironments 1/ CircumstellarDisks Artist’sView ESO-PR-0942
1/ Disks Key Scientific Questions • . Star/disk Evolution • Accretion, photo-evaporation, • Jets & Winds • Magnetic Fields • . Disk Structure & Dynamics (Gas & Dust) • . Chemistry: Water & Organics • in Planet-Forming Zones • . Planetary Formation • Initial conditions • . Planets/Disk interactions Fomalhaut ALMA/HST Bowler et al. 12
1/ Disks ProbingPlanet-formingRegions snow line 1 Lsun @100 pc Distance 0.01 0.1 1.0 10.0 100.0 [AU] Temperature 3000 1000 300 100 30 [K] Time 0.4 days 2 weeks 1 yr 30 yr 1000 yr E-ELT : 10 mas x 100pc = 1 AU E-MIDIR VLT/CRIRES E-IFU, E-HIRES ALMA
1/ Disks Star – disk interactions Co-rotation radius Magnetospheric radius snow line dust sublimation 1 Lsun @100 pc crystallization Distance 0.01 0.1 1.0 10.0 100.0 [AU] Temperature 3000 1000 300 100 30 [K] Time 0.4 days 2 weeks 1 yr 30 yr 1000 yr E-ELT : 10 mas x 0.01 x 100pc = 0.01 AU Spectro-astrometry E-MIDIR VLT/CRIRES E-IFU, E-HIRES ALMA
1/ Disks Star – disk interactions • Star/Disk evolution under the microscope… • Geometry of Accretion Channels • Inner Disk Properties (Warp, asymmetries…) • Role of Magnetic Fields (Config., Reconnection) • Jet L aunching Zone, • Stellar & Disk Winds E-ELT :10 mas x 0.01 x 100pc = 0.01 AU = 2 Ro MHD star – disk simulations E-IFU, E-HIRES & E-MIDIR R/Ro Zanni & Ferreira 09
1/ Disks Gas Dynamics in planet-forming zones Proto-planetary disk of SR21 (Ophiucus, 160pc, 1 Myr) Gap at 18 AU (sub-mm continuum emission Brown e al. 07) • E-ELT-MIDIR simulations of 12CO line emission at 4.7µm of SR21. • Left: Continuum subtracted and velocity channel co-added • Right: Velocity map with a resolving power of 100 000 (3 km/s) 32 AU E-MIDIR
1/ Disks Gas Dynamics in planet-forming zones • Water & Organics • Distribution and Dynamics • Disk cooling & Planetesimals formation • Organic/Prebiotic chemistry • (CH4, C2H2, HCN…) • Isotopic Fractionation • Transfer to Terrestrial Planets . Keck-NIRSPEC . high HRS (R = 25 000) in L-band. . Detection of H20 and OH radicals MIR lines . Hot (800K) water from the inner AUs E-MIDIR DR Tau, AS 205 N; Salyk et al. 08
1/ Disks Observing the DustyDisk Structures Asymmetries/Spirals in proto-planetary disks • E-MIDIR simulations of high-contrast imaging at 10 µm. • Jupiter footprint at 20 AU (@100pc) from G-star, • Gap detection at a few mJy/as2 • at 0.1-0.2” (10 – 20 AU) • ELT-MIR very competitive with • JWST E-MIDIR
1/ Disks Observing the DustyDisk Structures Asymmetries/Spirals in proto-planetary disks • E-MIDIR simulations of high-contrast imaging at 10 µm. • Jupiter footprint at 20 AU (@100pc) from G-star, • Gap detection at a few mJy/as2 • at 0.1-0.2” (10 – 20 AU) • ELT-MIR very competitive with • JWST E-MIDIR
1/ Disks Observing the DustyDisk Structures Asymmetries/Spirals in proto-planetary disks • E-MIDIR simulations of high-contrast imaging at 10 µm. • Jupiter footprint at 20 AU (@100pc) from G-star, • Gap detection at a few mJy/as2 • at 0.1-0.2” (10 – 20 AU) • ELT-MIR very competitive with • JWST E-MIDIR
1/ Disks Observing the DustyDisk Structures Asymmetries/Spirals in proto-planetary disks • E-MIDIR simulations of high-contrast imaging at 10 µm. • Jupiter footprint at 20 AU (@100pc) from G-star, • Gap detection at a few mJy/as2 • at 0.1-0.2” (10 – 20 AU) • ELT-MIR very competitive with • JWST E-MIDIR
StellarEnvironments 2/ Exoplanets Artist’sView ESO-PR-1106
2/ Exoplanets Key Scientific Questions . Architecture of Exoplanetary Systems? . Formation & Evolution Processes . How does it depend on the Host properties? (Mass, Age, Composition…) . How frequent are the Telluric planets in the HZ? . Physics & Atmosphere of Exoplanets? (Telluric & Giant) . Bio-Signatures Discovery & Conditions favorable for Life?
2/ Exoplanets Exploration of Telluric Planets • Expected planet population detected by Doppler spectroscopy with: • HARPS on the ESO 3.6-metre (precision 1 ms−1), Observed(Mayor et al. 11) Predicted(Mordasini et al. 09) corrected observed
2/ Exoplanets Exploration of Telluric Planets • Expected planet population detected by Doppler spectroscopy with: • HARPS on the ESO 3.6-metre (precision 1 ms−1; left), • ESPRESSO on the VLT(precision 10 cms−1; middle) • and HIRES on the E-ELT(precision 1 cms−1; right). • > HIRES, required to detect Earth-like planets in HZ of solar-type stars E-HIRES
2/ Exoplanets TwinEarthDiscovery • Simulations: 1.8 MEarthExo-Earth in HZ (P=145 days) • around a bright and low-activity K1V star. • RV precision: 2cm/s.Limitations: instr. noise, stellar oscillations, granulation and activity. • Detailed observing strategy: • 3 meas./night, every 3 nights over 8 months • Periodogram: 3σdetection (red) E-HIRES
2/ Exoplanets Planetary Atmospheres • Reflected, Transmitted or Emitted light of Exoplanets • Strongly or non-strongly irradiated planets • Physics of Planetary Atmospheres (Giant, Exo-Neptunes to Super-Earths) • - Geometric Albedos • - Chemical Composition • (H20, CH4, CO, CO2, NH3…) • - Atmosphere’s Dynamics • . Inversion, • . Vertical Mixing, • . Circulation, • . Evaporation, • Imprints of Formation • Mechanisms? Knutson et al. 09 No Thermal Inversion Thermal inversion E-HIRES, E-MIDIR, E-PCS Spitzer
2/ Exoplanets Imaging Planetary Systems • Physics of Giant Planets (down to Super-Earths) • Observables: Luminosity, Teff& Gravity • Atmospheric properties • Orbitalproperties: a, e, i, • Complementarity RV, Astr… • > Access Dynamical Mass Bpic; Lagrange et al. 10 HR8799; Marois et al. 10 E-IFU, E-MIDIR, E-PCS
2/ Exoplanets Imaging Planetary Systems • Physics of Giant Planets (down to Super-Earths) • Observables: Luminosity, Teff& Gravity • Atmospheric properties • Orbitalproperties: a, e, i, • Complementarity RV, Astr… • > Access Dynamical Mass SPHERE E-IFU/MIDIR GAIA E-IFU, E-MIDIR, E-PCS E-PCS Mesa et al. 11 Kasper et al. 10 Lattanzi & Sozzetti 10
2/ Exoplanets Imaging Planetary Systems • Physics of Giant Planets (down to Super-Earths) • Observables: Luminosity, Teff& Gravity • Atmospheric properties • Orbitalproperties: a, e, i, • Complementarity RV, Astr… • > Access Dynamical Mass • Formation/Evolution Theories • L – Mass Relation • Gas Accretion Phase Mordasini et al. 12 No AccretionShock AccretionShock E-IFU, E-MIDIR, E-PCS
2/ Exoplanets Imaging Planetary Systems • Physics of Giant Planets (down to Super-Earths) • Observables: Luminosity, Teff& Gravity • Atmospheric properties • Orbitalproperties: a, e, i, • Complementarity RV, Astr… • > Access Dynamical Mass • Formation/Evolution Theories • L – Mass Relation • Gas Accretion Phase • Planetary System Architecture • Dynamical stability • Planet-disk interactions E-IFU, E-MIDIR, E-PCS Bpic b; ESO PR 0842
StellarEnvironments 3/ Evolved Stars Eta Car (HST/WFPC2) N. Smith/NASA VLT/NaCo (L’, Bra, Pfg) Chesneau et al. 08 1’’
3/ Evolved stars • Environments • Disks, Outflows and Shocks Structure & Physical conditions • (Excitation, kinematics, density , temperature). • Interacting binary systems: cataclysmic variables and symbiotic systems • Archeology of Planetary systems • > Photosphericabundances of polluted white dwarfs • > Fe, Si, Ca, C , O, Mg abundances • Frequency of terrestrial planet building • Bulk chemistry of solid planetary bodies • Mass constraints for exoplanetary • building blocks • Frequency of water-rich exo-asteroids • Constraints on habitable environments Farihi et al. 2010
Conclusions • Stellar environments under the Microscope • > Unique Spatial resolution & sensitivity • > Offering a versatile instrumentation • (wavelengths coverage, modes, spatial/spectral resolution…) • > Will count on new discoveries (ALMA, SPHERE, GPI, GAIA, TESS...) • > Mostly aimed at Characterizing , but not only… • Incredible Machine for Disks, Exoplanets & Evolved stars • > Star/Disk Evolution Processes • > Disk Structure, Composition & Chemistry (Water & Organics) • > Gas/Dust components in planet-forming Regions • > Telluric and Giant Planets Characterization • (frequency, physics, atmosphere & formation) • > Twin Earth in RV & Imaging Super-Earths • > Conditions favorable for Life
1/ Disks Star – disk interactions • Star/Disk evolution under the microscope… • Geometry of Accretion Channels • Inner Disk Properties (Warp, asymmetries…) • Role of Magnetic Fields (Config., Reconnection) • Jet L aunching Zone, • Stellar & Disk Winds E-ELT :10 mas x 0.01 x 100pc = 0.01 AU = 2 Ro E-IFU, E-HIRES & E-MIDIR . VLT/CRIRES, CO emission linesat 4.7µm (< 2 AU) AS 205 N, Pontopiddan et al. 11