1 / 22

MIMOSA22  MIMOSA26  ULTIMATE

MIMOSA22  MIMOSA26  ULTIMATE. Christine HU-GUO (IPHC-Strasbourg). MIMOSA22. AMS-OPTO 0.35 µm Dim. pixel 18.4 x 18.4 µm² Dim. Matrice 136 x 576 pixels 8 sorties analogiques 128 sorties numériques Vitesse d’intégration < 100µs Slow Control : JTAG Références internes (DAC)

fayre
Download Presentation

MIMOSA22  MIMOSA26  ULTIMATE

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. MIMOSA22  MIMOSA26  ULTIMATE Christine HU-GUO (IPHC-Strasbourg)

  2. MIMOSA22 • AMS-OPTO 0.35µm • Dim. pixel 18.4 x 18.4 µm² • Dim. Matrice 136 x 576 pixels • 8 sorties analogiques • 128 sorties numériques • Vitesse d’intégration < 100µs • Slow Control : JTAG • Références internes (DAC) • Lecture multiplexée  50 MHz • Non inclus: suppression de zéros • Soumission : octobre 2007 • Retour de fonderie : janvier 2008 STAR meeting IPHC christine.hu@ires.in2p3.fr

  3. Slct_Row Slct_Row Slct_Gr 16 pix Slct_Row Slct_Row Slct_Row Slct_Gr 16 pix Slct_Row Slct_Row Slct_Row Slct_Gr 16 pix Slct_Row Column –level discriminator RD CALIB LATCH In Pixel amplification & Signal Processing (1) Integrated in Discri. • 4 digital control signals per row: PWR_On, Slct_Row, Slct_Grp, Clamping • Slct_Row (16xCK), PWR_On (2x16xCK), Slct_Gr (16x16xCK): power activate signals • Clp: signal for CDS (3xCK) STAR meeting IPHC christine.hu@ires.in2p3.fr

  4. M4 M5 Low-pass filter M3 feedback Pdiff / Nwell M2 Nwell / Pepi signal current In Pixel amplification & Signal Processing (2) • Common Source (CS) amplification in pixel • Only NMOS transistors can be used 1 2 3 CS + Reset Improved CS + Reset Improved CS + Feedback + Self biased M4 bias bias reset reset M3 M3 out out M1 M1 Nwell / Pepi M2 M2 Nwell / Pepi signal current signal current a negative low frequency feedback was introduced to decrease amplification gain variations due to process variations STAR meeting IPHC christine.hu@ires.in2p3.fr

  5. 3 3 1 1 2 2 2 2 1 1 3 3 In Pixel amplification & Signal Processing (3) • Measured Mimosa22 pixel (Amp+CDS) performances (20 °C) before irradiation: • After ionizing irradiation, feedback self-biased structure has the best performances (conditions: +20C, integration time ~92μs) 1 2 3 3 BUT from previous studies (MIMOS15) on chips without in-pixel signal processing the noise was in order of ~15e after dose of 1MRad STAR meeting IPHC christine.hu@ires.in2p3.fr

  6. M4 M5 Low-pass filter M3 feedback Pdiff / Nwell M2 Nwell / Pepi signal current Increasing Radiation Tolerance in Pixel • Ionizing radiation tolerance (22bis, 22ter): • Pixel circuit level: • ELT for the transistor connected to the detection diode • Diode level: • Remove thick oxide surrounding N-well diode by replacing with thin-oxide • Non-ionizing radiation tolerance: • Reducing pixel pitch  pitch < 20 µm  18.4 µm • Increasing sensing diode size: limited by layout • Reducing integration time  ~100-200 µs STAR meeting IPHC christine.hu@ires.in2p3.fr

  7. Vclp_d RD REF1 RD RD REF2 Q CALIB LATCH To Pixel RD RD LATCH Vclp_d RD CALIB Q Column-level discriminators • Discriminator design considerations: • Small input signal  Offset compensated amplifier stage • Dim: 16.4 x 430 µm2 • Conversion time = row read out time (~200 ns) • Consumption ~230 µW Column-level Double Sampling (DS) reduce pixel to pixel dispersion (FPN) STAR meeting IPHC christine.hu@ires.in2p3.fr

  8. 0.3 mV 0.2 mV Column-level discriminators: characterizations Analyze Method • Scan threshold voltage (N discri.) • Fit to an error function • Mean Offset • Sigma temporal noise (TN) • Mean of N sigma  average of TN • RMS of N offsets  FPN Resultants • FPN : 0.2 mV • TN : 0.3 mV STAR meeting IPHC christine.hu@ires.in2p3.fr

  9. Test in lab: Temporal Noise: 0.64 mV  11.5 e- FPN: 0.22 mV  3.9 e- Beam test with 120 GeV pions at CERN-SPS Threshold ~ 4 mV  6 σ noise 0.64 mV 0.22 mV Mimosa22 test results: Pixels + 128 Discriminators • Detection efficiency > 99.5% • Spatial resolution < 4 µm • Fake rate < 10-4 STAR meeting IPHC christine.hu@ires.in2p3.fr

  10. MIMOSA26: 1st Sensor with Integrated Ø Chip size : 13.8 x 21.6 mm2, AMS C35B4: 0.35µm technology • Pixel array: 576 x 1152, pitch: 18.4 µm • Active area: ~10.6 x 21.2 mm2 • In each pixel: • Amplification • CDS (Correlated Double Sampling) • Testability: several test points implemented all along readout path • Pixels out (analogue) • Discriminators • Zero suppression • transmission Row sequencer Width: ~350 µm • 1152 column-level discriminators • offset compensated high gain preamplifier followedby latch Zero suppression logic Reference Voltages Buffering for 1152 discriminators I/O PadsPower supply PadsCircuit control PadsLVDS Tx & Rx Current Ref. Bias DACs Readout controller JTAG controller Memory management Memory IP blocks Test blocksPLL, 8b/10b STAR meeting IPHC christine.hu@ires.in2p3.fr

  11. Vclp_d RD REF1 RD RD REF2 Q CALIB LATCH To Pixel RD RD LATCH Vclp_d RD CALIB DAC DAC REF Q 288 discriminators 288 discriminators 288 discriminators 288 discriminators DAC discriminator discriminator discriminator DAC 1152 discriminators Readout Chain: Pixel + discriminator • Reference voltages (threshold) & clamping voltage are analogue signals which have to apply to 1152 discriminators • Need stable signals during "RD" & "CALIB" periods • Ex. RD (3 CK  ~ 30 ns) • Need to drive ~2 cm long line • RC distribution line + successive charge rejections • Even an ideal voltage source CANNOT satisfy these requirements • 1152 discriminators are divided into 4 groups, 4 bias DAC • compensate process dispersions of discriminators STAR meeting IPHC christine.hu@ires.in2p3.fr

  12. Readout Chain: zero suppression + memories ………… • Connected to column-level discriminators outputs • Zero suppression is based on row by row sparse data scan readout and organized in pipeline mode in three steps: Pixel Array Column 0 Column 1152 ………… Discriminators A/D A/D Core of the zero suppression ………… Sparse Data Scan (N states) Sparse Data Scan (N states) Sparse Data Scan (N states) Retaining M states per row (+ addresses) among 18 banks Memory 0 Memory 1 Serial transmission STAR meeting IPHC christine.hu@ires.in2p3.fr

  13. Readout Chain: zero suppression + memories • 1st step: • 1152 columns terminations 18 banks // scan • Based on a sparse data scan algorithm to find hit pixels (discriminator output = "1") • Up to 4 contiguous pixel signals above Vth will be encoded in a 2 bits state word following by address of the 1st pixel • Find up to N states with column addresses per bank ………… Column 0 Column 1152 ………… A/D A/D Core of the zero suppression ………… Sparse Data Scan (N states) Sparse Data Scan (N states) Sparse Data Scan (N states) Retaining M states per row (+ addresses) among 18 banks Memory 0 Memory 1 Serial transmission STAR meeting IPHC christine.hu@ires.in2p3.fr

  14. Readout Chain: zero suppression + memories …….… Row M-1 state Row M state Row M+1 state ……..….… HIT State Binary code 00 1 0 0 0 Row M 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 01 1 1 0 0 10 1 1 1 0 State 1 State 2 11 1 1 1 1 2 bits binary code Column address of the 1st pixel State: Column address of the 1st pixel+ 2 bits code STAR meeting IPHC christine.hu@ires.in2p3.fr

  15. Readout Chain: zero suppression + memories ………… • 2nd step: • Read out the outcomes of the 1st step in all banks and keep up to M states • Add row and bank addresses Column 0 Column 1152 ………… A/D A/D Core of the zero suppression ………… Sparse Data Scan (N states) Sparse Data Scan (N states) Sparse Data Scan (N states) Retaining M states per row (+ addresses) among 18 banks Memory 0 Memory 1 Serial transmission STAR meeting IPHC christine.hu@ires.in2p3.fr

  16. Readout Chain: zero suppression + memories ………… N, M, Memory capacity and Memory Read-out speed depend on hit density  N = 6, M = 9, Memory ~ 40 Kbits, Nominal Read-out Freq.: 80 MHz • 3rd step: • Store the outcomes of the 2nd step to a memory • The memory is made of 2 IP's buffers  continuous read-out • 1 buffer stores current frame, 1 buffer is read out previous frame • Serial transmission by LVDS pad ………… S0 ………… S1 ………… S17 Column 0 Column 1152 Column 0 Column 63 Column 0 Column 63 Column 0 Column 63 ………… A/D A/D Core of the zero suppression ………… Sparse Data Scan (N states) Sparse Data Scan (N states) Sparse Data Scan (N states) Retaining M states per row (+ addresses) among 18 banks Memory 0 Memory 1 Serial transmission STAR meeting IPHC christine.hu@ires.in2p3.fr

  17. Test MIMOSA26 • Mimosa26 returned from foundry on February 2009. • Extensive tests are going on in the laboratory. • Measured temporal noise = 0.6-0.7 mV and FPN = 0.3-0.4 mV for pixel array with its associated discriminators. • These values are equivalent to those obtained with Mimosa22. • Figures show measured results for one quarter of the matrix with column-level discriminators. The remaining three quarters of the matrix exhibit similar performances showing a good uniformity of the whole 576 x 1152 pixels with the 1152 discriminators • The characterization of Mimosa26 will be completed by the beam tests planned in Summer 2009 + yield evaluation STAR meeting IPHC christine.hu@ires.in2p3.fr

  18. MIMOSA26  ULTIMATE • Zero suppression: physics condition : 2,4 x 105 hits/s/cm2 • Readout time 200 µs  ~ 200 hits/frame/sensor • The highest luminosity expected at STAR for RHIC2 gives: • 60 hits / cm2 , s = 8 hits • On the inner layer of sensors in a 200 µs integration window. • This rate is for interactions and peripheral collisions. Possible background sources are not included. • ~450 hits /sensor • 450 hits + 240 Noisy pixels • > 5s & ~2x10-4 noisy pixels • Safety factor ? • SUZE design: • Maximum output speed: ~100 Mbits/s • 2 memories of (200 x 3) x 32 bits • With new condition & with ~ 10-4  ~ 100 noisy pixels • Zero suppression  based on SUZE's group & row hits finders design • Points have to be changed: • Increase maximum output speed: up to 256 Mbits/s • Increase dimension of memory: > 3 times larger (2048 x 32)x2 • Memory: anti latch up?  530 hits /frame equivalent STAR meeting IPHC christine.hu@ires.in2p3.fr

  19. Power Consumption 500 hits STAR meeting IPHC christine.hu@ires.in2p3.fr

  20. Frequency distribution • Circuit needs: • CK : 80 MHz • Pixels & Comparators: 16 CK  5 MHz • SUZE CK: 80 MHz • LVDS out: 2 x 120 MHz  2 x 160 MHz • Input Freq.: • 160 MHz external CK • Option: 80 MHz external CK • Option: 10 MHz external CK, PLL (N=16) output Freq.: 160 MHz • 80 MHz will be made in chip • Possibility to integrate 8b/10b encoding to allow reasonable clock recovery • Option for the Ultimate1 chip Pixels & Comparators 8b/10b 16 MHz 80 MHz ÷ 10 ÷ 2 160MHz LVDS PLL (N=16) LVDS LVDS 10MHz 160MHz STAR meeting IPHC christine.hu@ires.in2p3.fr

  21. Ultimate Sensor Testing Functionality (implemented in MIMOSA26) Analogue pixels outputs Pixel Array switch Inject 2 Test Voltages to emulate pixels outputs comparators Read One Row Register, Pixels & Comparators are in normal mode, tint = 200µs, Readout freq. = 5 MHz via 2 LVDS output pads. The auto increment functional logic to scan whole matrix will be studied. switch switch Inject 2 SUZE Test Rows SUZE 160 MHz switch Inject Test Pattern of 32 bits to emulate memory outputs 5 MHz 5 MHz 5 MHz 160 MHz MUX MUX MUX Data CK LVDS LVDS LVDS STAR meeting IPHC christine.hu@ires.in2p3.fr

  22. Latch-up STAR meeting IPHC christine.hu@ires.in2p3.fr

More Related