1 / 40

Regresi linier sederhana

Regresi linier sederhana. Kuliah #2 analisis regresi Usman Bustaman. Apa itu ?. Regresi Linier Sederhana. Regresi ( Buku 5: Kutner , Et All P. 5). Sir Francis Galton (latter part of the 19th century): studied the relation between heights of parents and children

feivel
Download Presentation

Regresi linier sederhana

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Regresi linier sederhana Kuliah #2 analisisregresi UsmanBustaman

  2. Apaitu? • Regresi • Linier • Sederhana

  3. Regresi(Buku 5: Kutner, Et All P. 5) • Sir Francis Galton (latter part of the 19th century): • studied the relation between heights of parents and children • noted that the heights of children of both tall and short parents appeared to "revert" or "regress" to the mean of the group. • developed a mathematical description of this regression tendency, • today's regression models (to describe statistical relations between variables).

  4. m B linier • Masihingat Y=mX+B? • Slope? • Konstanta? Y X

  5. Linier lebihlanjut… • Linier dalamparamater… • Persamaan Linier orde 1: • Persamaan Linier orde 2: • Dst… (orde pangkattertinggi yang terdapatpadavariabelbebasnya)

  6. m B sederhana • Relasiantar 2 variabel: • 1 variabelbebas (independent variable) • 1 variabeltakbebas (dependent variable) • Y=mX+B? • Manavariabelbebas? • Manavariabeltakbebas? Y X

  7. Bagaimanamembangun Model Regresi Linier Sederhana?Analisis/Comment Grafik-2 Berikut:

  8. Analisis/Comment Grafik-2 Berikut: B A C D

  9. Fungsi rata-2 (Mean Function) If you know something about X, this knowledge helps you predict something about Y.

  10. Prediksiterbaik… •  Bagaimanamengestimasi parameter dengancaraterbaik…

  11. Regresi Linier

  12. Regresi Linier Populasi Koefisienregresi Sampel ˆ Y = b0 + b1Xi

  13. e = b b + Y X i 0 1 Regresi Linier  Model Y ? (the actual value of Yi) Yi Xi X

  14. Regresiterbaik = minimisasi error • Semua residual harusnol • Minimum Jumlah residual • Minimum jumlahabsolut residual • Minimum versiTshebysheff • Minimum jumlahkuadrat residual  OLS

  15. Ordinary Least Square (OLS)

  16. Assumptions • Linear regression assumes that… • 1. The relationship between X and Y is linear • 2. Y is distributed normally at each value of X • 3. The variance of Y at every value of X is the same (homogeneity of variances) • 4. The observations are independent

  17. Asumsilebihlanjut…Alexander Von Eye & ChristofSchuster (1998) Regression Analysis for Social Sciences

  18. Asumsilebihlanjut…Alexander Von Eye & ChristofSchuster (1998) Regression Analysis for Social Sciences

  19. Proses estimasi parameter (Drapper & Smith)

  20. Koefisienregresi

  21. Simbol-2 (Weisberg p. 22)

  22. Maknakoefisienregresi • b0 ≈ ….. • b1≈ ….. x = 0 ? - Tinggivsberatbadan - Nilai math vs stat - Lama sekolahvspendptn - Lama training vsjmlproduksi …….

  23. A2 B2 C2 yi C y A B SSE Variance around the regression line Additional variability not explained by x—what least squares method aims to minimize SSR Distance from regression line to naïve mean of y Variability due to x (regression) SST Total squared distance of observations from naïve mean of y Total variation B A C yi x Regression Picture

  24. SST (Sum Square TOTAL) Variance to be explained by predictors (SST) Y

  25. SSE & SSR X Variance explained by X (SSR) Y Variance NOT explained by X (SSE)

  26. SST = SSR + SSE Variance to be explained by predictors (SST) X Variance explained by X (SSR) Y Variance NOT explained by X (SSE)

  27. KoefisienDeterminasi Coefficient of Determination to judge the adequacy of the regression model Maknanya: …. ?

  28. KoefisienDeterminasi

  29. Salah pahamttg r2 • R2tinggi prediksisemakinbaik …. • R2 tinggi  model regresicocokdgndatanya … • R2rendah (mendekatinol)  tidakadahubunganantaravariabel X dan Y …

  30. Korelasi Buktikan…! Pearson Correlation…? Correlation measures the strength of the linear association between two variables.

  31. Korelasi & Regresi

  32. Assumptions • Linear regression assumes that… • 1. The relationship between X and Y is linear • 2. Y is distributed normally at each value of X • 3. The variance of Y at every value of X is the same (homogeneity of variances) • 4. The observations are independent

  33. Uji parameter RLS • Linear regression assumes that… • 1. The relationship between X and Y is linear • 2. Y is distributed normally at each value of X • 3. The variance of Y at every value of X is the same (homogeneity of variances) • 4. The observations are independent

  34. Distribusi sampling b1

  35. b1 ~ Normal ~ Normal

  36. Ujikoefisienregresi

  37. Ujikoefisienregresi

  38. SelangKepercayaankoefisienregresi Confidence Interval for b1

  39. Ujikoefisienregresi

  40. SelangKepercayaankoefisienregresi Confidence Interval for the intercept

More Related