1 / 17

Lecture 2: Fisher’s Variance Decomposition

Lecture 2: Fisher’s Variance Decomposition. Genotypic value. Phenotypic value -- we will occasionally also use z for this value. Environmental value. Contribution of a locus to a trait. Basic model: P = G + E. G = average phenotypic value for that genotype

felisha
Download Presentation

Lecture 2: Fisher’s Variance Decomposition

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Lecture 2: Fisher’s Variance Decomposition

  2. Genotypic value Phenotypic value -- we will occasionally also use z for this value Environmental value Contribution of a locus to a trait Basic model: P = G + E G = average phenotypic value for that genotype if we are able to replicate it over the universe of environmental values, G = E[P] Modifications: G - E covariance -- higher performing Animals may be disproportionately rewarded G x E interaction --- G values are different across environments. Basic model now becomes P = G + E + GE

  3. C C C + a + d C + a(1+k) C + 2a C + 2a C -a C + d C + a 2a = G(Q2Q2) - G(Q1Q1) Alternative parameterizations of Genotypic values Q1Q1 Q2Q1 Q2Q2 d measures dominance, with d = 0 if the heterozygote is exactly intermediate to the two homozygotes d = ak =G(Q1Q2 ) - [G(Q2Q2) + G(Q1Q1) ]/2 k = d/a is a scaled measure of the dominance

  4. Example: Booroola (B) gene 2a = G(BB) - G(bb) = 2.66 -1.46 --> a = 0.59 ak =d = G(Bb) - [ G(BB)+G(bb)]/2 = 0.10 k = d/a = 0.17

  5. G = π + Æ + Æ + ± i j G i j i j The genotypic value predicted from the individual allelic effects is thus X Dominance deviations --- the difference (for genotype AiAj) between the genotypic value predicted from the two single alleles and the actual genotypic value, Average contribution to genotypic value for allele i Mean value, with b π = G ¢ f r e q ( Q Q ) G = π + Æ + Æ G i j i j i j G i j b G ° G = ± i j i j i j Fisher’s Decomposition of G One of Fisher’s key insights was that the genotypic value consists of a fraction that can be passed from parent to offspring and a fraction that cannot. Since parents pass along single alleles to their offspring, the ai (the average effect of allele i) represent these contributions

  6. G = π + Æ + Æ + ± i j G i j i j Residual error Predicted value G = π + 2 Æ + ( Æ ° Æ ) N + ± i j G i j 1 2 1 Intercept Independent (predictor) variable N = # of Q2 alleles Regression slope Regression residual 8 2 Æ f o r N = 0 ; e . g , Q Q > 1 1 1 < 2 Æ + ( Æ ° Æ ) N = Æ + Æ f o r N = 1 ; e . g , Q Q 1 2 1 1 1 1 2 > : 2 Æ f o r N = 2 ; e . g , Q Q 1 2 2 Fisher’s decomposition is a Regression A notational change clearly shows this is a regression,

  7. Allele Q1 common, a2 > a1 Allele Q2 common, a1 > a2 Both Q1 and Q2 frequent, a1 = a2 = 0 Slope = a2 - a1 G21 G22 G G11 0 1 2 N

  8. Mean π = 2 p a ( 1 + p k ) G 2 1 Allelic effects Æ = p a [ 1 + k ( p ° p ) ] 2 1 1 2 Æ = ° p a [ 1 + k ( p ° p ) ] 1 2 1 2 Dominance deviations ± = G ° π ° Æ ° Æ i j i j G i j Consider a diallelic locus, where p1 = freq(Q1)

  9. n ≥ ¥ ) ( X k k ( ) ( ) B V = Æ + Æ i k k = 1 B V ( G ) = Æ + Æ i j i j Average effects and Breeding Values The a values are the average effects of an allele Breeders focus on breeding value (BV) Why all the fuss over the BV? Consider the offspring of a QxQy sire mated to a random dam. What is the expected value of the offspring?

  10. G e n o t y p e F r e q u e n c y V a l u e Q Q 1 / 4 π + Æ + Æ + ± x w G x w x w Q Q 1 / 4 π + Æ + Æ + ± x z G x z x z Q Q 1 / 4 π + Æ + Æ + ± y w G y w y w Q Q 1 / 4 π + Æ + Æ + ± y z G y z y z Æ + Æ Æ + Æ ± + ± + ± + ± x y w z x w x z y w y z π = π + + + O G 2 2 4 For random w and z alleles, this has an expected value of zero For a random dam, these have expected value 0 Hence, µ ∂ Æ + Æ B V ( S i r e ) x y π ° π = = O G 2 2 The expected value of an offspring is the expected value of µ ∂ µ ∂

  11. B V ( S i r e ) = 2 ( π ° π ) G 0 B V ( S i r e ) B V ( D a m ) π ° π = + G 0 2 2 We can thus estimate the BV for a sire by twice the deviation of his offspring from the pop mean, More generally, the expected value of an offspring is the average breeding value of its parents,

  12. G = π + ( Æ + Æ ) + ± i j g i j i j 2 2 2 2 n n æ ( G ) = æ ( π + ( Æ + Æ ) + ± ) = æ ( Æ + Æ ) + æ ( ± ) X X g i j i j i j i j k k k ( ) ( ) ( ) 2 2 2 æ ( G ) = æ ( Æ + Æ ) + æ ( ± ) As Cov(a,d) = 0 i j i j k k = 1 = 1 2 2 2 æ = æ + æ G A D Dominance Genetic Variance (or simply dominance variance) Additive Genetic Variance (or simply Additive Variance) Genetic Variances

  13. Q1Q1 Q1Q2 Q2Q2 m X 2 2 2 æ = 2 E [ Æ ] = 2 Æ p 0 a(1+k) 2a i A i i = 1 2 2 2 æ = 2 p p a [ 1 + k ( p ° p ) ] 1 2 1 2 A When dominance present, asymmetric function of allele frequencies Dominance effects additive variance m m X X 2 2 2 æ = 2 E [ ± ] = ± p p i j D i j i j = 1 = 1 2 2 æ = ( 2 p p a k ) 1 2 D Equals zero if k = 0 This is a symmetric function of allele frequencies Since E[a] = 0, Var(a) = E[(a -ma)2] = E[a2] One locus, 2 alleles: One locus, 2 alleles:

  14. VA Allele frequency, p Additive variance, VA, with no dominance (k = 0)

  15. Complete dominance (k = 1) VA VD Allele frequency, p

  16. Zero additive variance Overdominance (k = 2) VA VD Allele frequency, p Allele frequency, p

  17. G = π + ( Æ + Æ + Æ + Æ ) + ( ± + ± ) i j k l G i j k l i j k j + ( Æ Æ + Æ Æ + Æ Æ + Æ Æ ) i k i l j k j l + ( Æ ± + Æ ± + Æ ± + Æ ± ) i k l j k l k i j l i j + ( ± ± ) i j k l = π + A + D + A A + A D + DD G Additive x Additive interactions -- interactions between a single allele at one locus with a single allele at another Dominance x dominance interaction --- the interaction between the dominance deviation at one locus with the dominance deviation at another. Additive x Dominant interactions -- interactions between an allele at one locus with the genotype at another, e.g. allele Ai and genotype Bkj Dominance value -- interaction between the two alleles at a locus Breeding value 2 2 2 2 2 2 æ = æ + æ + æ + æ + æ G A D A A A D D D Epistasis These components are defined to be uncorrelated, (or orthogonal), so that

More Related