470 likes | 645 Views
Ram Brustein. אוניברסיטת בן-גוריון. Entanglement, thermodynamics & area. Series of papers with Amos Yarom, BGU (also David Oaknin, UBC) hep-th/0302186 + to appear. Entanglement & area thermodynamics of Rindler space Entanglement & area
E N D
Ram Brustein אוניברסיטת בן-גוריון Entanglement, thermodynamics & area Series of papers with Amos Yarom, BGU (also David Oaknin, UBC) hep-th/0302186 + to appear • Entanglement & area thermodynamics of Rindler space • Entanglement & area • Entanglement & dimensional reduction (holography) sorry, not today!
Bekenstein, Hawking Bekenstein Fichler & Susskind, Bousso Brustein & Veneziano Thermodynamics, Area, Holography • Black Holes • Entropy Bounds • BEB • Holographic • Causal • Holographic principle: Boundary theory with a limited #DOF/planck area ‘thooft, Susskind
horizon Lines of constant x -constant acceleration Addition of velocities in SR proper acceleration
out = z < 0 in = z > 0 Compare two expressions for rin (by writing them as a PI) 1. 2. TFD Minkowski vacuum is a Rindler thermal state(Unruh effect)
1. In general:
out in Result
2. Heff – generator of time translations Time slicing the interval [0,b0]:
Guess: result
Results If • The boundary conditions are the same • The actions are equal • The measures are equal Then
out in out in For half space Heff=HRindler , HRindler= boost
Rindler area thermodynamics Susskind Uglum Callan Wilczek Kabat Strassler De Alwis Ohta Emparan …
In 4D: Go to “optical” space Compute using heat kernel method High temperature approximation Volume of optical space
Optical metric Compute: Euclidean Rindler In 4D
S M S,T unitary S
M M 1 o M M M M S S
Ram Brustein אוניברסיטת בן-גוריון Entanglement, thermodynamics & area Series of papers with Amos Yarom, BGU (also David Oaknin, UBC) hep-th/0302186 + to appear • Entanglement & area thermodynamics of Rindler space • Entanglement & area • Entanglement & dimensional reduction (holography) sorry, not today!
out in out in For half space Heff=HRindler , HRindler= boost
(DEV)2 • System in an energy eigenstate energy does not fluctuate • Energy of a sub-system fluctuates “Entanglement energy” fluctuations Connect to Rindler thermodynamics
EV= For free fields
X For a massless field Vanishes for the whole space! Geometry F(x) Operator
F(x) = F(x) UV cutoff!! In this example Exp(-p/L)
Rindler specific heat @ h=0
Other shapes y t z Heffcomplicated, time dependent, no simple thermodynamics, area dependence o.k. For area thermodynamics need – Thermofield double
|0> is not necessarily an eigenstate of |0> is an entnangled state w.r.t. V Show: Entanglement and area Non-extensive!, depends on boundary (similar to entanglement entropy)
is linear in boundary area Show that R is the radius of the smallest sphere containing V
Need to evaluate • Ia ka • General cutoff Numerical factors depend on regularization
V F(x) DV(x)= (DEV)2for a d-dimensional sphere
Kd K27 =
Fluctuations live on the boundary V2 V1 V1 V1 V2 V3 Covariance
DE The “flower” Circles 5 < R < 75 R=40, dR=4, J R=20, dR=2, J R=10, dR=1, J Increasing m
Express as a double derivative and convert to a boundary expression Boundary theory ? This is possible iff which is generally true for operators of interest
di+dj = 2 logarithmic di+dj = d d-function
Boundary* correlation functions Show (massless free field, V half space, large # of fields N)
Then, show that in the large N limit equality holds for all correlation functions Only contribution in leading order in N comes from
Summary • Entanglement & area thermodynamics of Rindler space • Entanglement & area • Entanglement & dimensional reduction